Antoni P Tomsia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Composites Built through Freezing. Accounts of Chemical Research, 2022, 55, 1492-1502.	7.6	7
2	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie - International Edition, 2021, 60, 14307-14312.	7.2	66
3	Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami. Angewandte Chemie, 2021, 133, 14428-14433.	1.6	5

Titelbild: Bioinspired Color Switchable Photonic Crystal Silicone Elastomer Kirigami (Angew. Chem.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

5	Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nature Communications, 2021, 12, 4539.	5.8	64
6	Strong sequentially bridged MXene sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27154-27161.	3.3	148
7	Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 2020, 580, 210-215.	13.7	284
8	Ultratough graphene–black phosphorus films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8727-8735.	3.3	74
9	Ultratough nacre-inspired epoxy–graphene composites with shape memory properties. Journal of Materials Chemistry A, 2019, 7, 2787-2794.	5.2	53

 $R\tilde{A}^{1/2} cktitelbild: Ultraâ \in Tough Inverse Artificial Nacre Based on Epoxyâ \in Craphene by Freezeâ \in Casting (Angew.) Tj ETQq0 0 0 rgBT / Over 1.6 Construction of the second seco$

11	Ultrastrong Graphene Films via Long-Chain π-Bridging. Matter, 2019, 1, 389-401.	5.0	108
12	Ultraâ€Tough Inverse Artificial Nacre Based on Epoxyâ€Graphene by Freezeâ€Casting. Angewandte Chemie - International Edition, 2019, 58, 7636-7640.	7.2	93
13	Ultraâ€Tough Inverse Artificial Nacre Based on Epoxyâ€Graphene by Freezeâ€Casting. Angewandte Chemie, 2019, 131, 7718-7722.	1.6	14
14	Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase. Nature Communications, 2019, 10, 961.	5.8	106
15	Cellular Response to 3â€D Printed Bioactive Silicate and Borosilicate Glass Scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 818-824.	1.6	7
16	Strength, toughness, and reliability of a porous glass/biopolymer composite scaffold. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1209-1217.	1.6	18
17	Ultratough Bioinspired Graphene Fiber <i>via</i> Sequential Toughening of Hydrogen and Ionic Bonding. ACS Nano, 2018, 12, 12638-12645.	7.3	53
18	Freeze Casting for Assembling Bioinspired Structural Materials. Advanced Materials, 2017, 29, 1703155.	11.1	160

ANTONI P TOMSIA

#	Article	IF	CITATIONS
19	Freeze Casting: Freeze Casting for Assembling Bioinspired Structural Materials (Adv. Mater. 45/2017). Advanced Materials, 2017, 29, .	11.1	0
20	Thermochromic Artificial Nacre Based on Montmorillonite. ACS Applied Materials & amp; Interfaces, 2017, 9, 24993-24998.	4.0	34
21	Robust Bioinspired Graphene Film via π–π Cross-linking. ACS Applied Materials & Interfaces, 2017, 9, 24987-24992.	4.0	53
22	Bioactive Glass for Large Bone Repair. Advanced Healthcare Materials, 2015, 4, 2842-2848.	3.9	49
23	Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science Advances, 2015, 1, e1500849.	4.7	336
24	Biomimetic gradient scaffold from ice-templating for self-seeding of cells with capillary effect. Acta Biomaterialia, 2015, 20, 113-119.	4.1	101
25	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	13.3	3,284
26	Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair. Advanced Functional Materials, 2013, 23, 5461-5476.	7.8	183
27	A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits. Journal of the European Ceramic Society, 2013, 33, 679-688.	2.8	29
28	Tissue Engineering: Toward Strong and Tough Glass and Ceramic Scaffolds for Bone Repair (Adv.) Tj ETQq0 0 0 r	gBT /Over 7.8	ock 10 Tf 50
29	Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering C, 2011, 31, 1245-1256.	3.8	546
30	Bioinspired Strong and Highly Porous Glass Scaffolds. Advanced Functional Materials, 2011, 21, 1058-1063.	7.8	215
31	Bioactive glass in tissue engineering. Acta Biomaterialia, 2011, 7, 2355-2373.	4.1	1,421
32	Architectural Control of Freezeâ€Cast Ceramics Through Additives and Templating. Journal of the American Ceramic Society, 2009, 92, 1534-1539.	1.9	240
33	Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. Journal of Biomedical Materials Research - Part A, 2008, 85A, 218-227.	2.1	246
34	Fracture modes under uniaxial compression in hydroxyapatite scaffolds fabricated by robocasting. Journal of Biomedical Materials Research - Part A, 2007, 83A, 646-655.	2.1	79
35	Ice-templated porous alumina structures. Acta Materialia, 2007, 55, 1965-1974.	3.8	647
36	Stress–corrosion crack growth of Si–Na–K–Mg–Ca–P–O bioactive glasses in simulated human physiological environment. Biomaterials, 2007, 28, 4901-4911.	5.7	25

#	Article	IF	CITATIONS
37	Freezing as a Path to Build Complex Composites. Science, 2006, 311, 515-518.	6.0	1,676
38	Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomaterialia, 2006, 2, 457-466.	4.1	291
39	Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006, 27, 5480-5489.	5.7	779