
Carlo R Carere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610224/publications.pdf Version: 2024-02-01

CADLO P CADEDE

Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME Journal, 2016, 10, 761-777.	4.4	503
Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 2017, 552, 400-403.	13.7	290
Third Generation Biofuels via Direct Cellulose Fermentation. International Journal of Molecular Sciences, 2008, 9, 1342-1360.	1.8	252
Microbial biogeography of 925 geothermal springs in New Zealand. Nature Communications, 2018, 9, 2876.	5.8	163
Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME Journal, 2019, 13, 1801-1813.	4.4	129
Persistence of the dominant soil phylum <i>Acidobacteria</i> by trace gas scavenging. Proceedings of the United States of America, 2015, 112, 10497-10502.	3.3	117
Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME Journal, 2017, 11, 2599-2610.	4.4	107
Challenges for biohydrogen production via direct lignocellulose fermentation. International Journal of Hydrogen Energy, 2009, 34, 7390-7403.	3.8	85
The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME Journal, 2017, 11, 125-137.	4.4	66
Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2and ethanol-producing bacteria. BMC Microbiology, 2012, 12, 295.	1.3	58
Formate synthesis byClostridium thermocellumduring anaerobic fermentation. Canadian Journal of Microbiology, 2006, 52, 681-688.	0.8	47
Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation liquors. Water Research, 2018, 140, 1-11.	5.3	47
Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Indian Journal of Microbiology, 2008, 48, 252-266.	1.5	40
Thermophilic methanotrophs: in hot pursuit. FEMS Microbiology Ecology, 2019, 95, .	1.3	18
Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N2 and H2 sparging of open-batch cultures of Clostridium thermocellum ATCC 27405. Applied Microbiology and Biotechnology, 2014, 98, 2829-2840.	1.7	16
Cofactor Tail Length Modulates Catalysis of Bacterial F420-Dependent Oxidoreductases. Frontiers in Microbiology, 2017, 8, 1902.	1.5	15
Hydrogen Oxidation Influences Glycogen Accumulation in a Verrucomicrobial Methanotroph. Frontiers in Microbiology, 2019, 10, 1873.	1.5	15
Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Frontiers in Microbiology, 2021, 12, 651744.	1.5	12
	source for microbial growth and survival. ISME Journal, 2016, 10, 761-777. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 2017, 552, 400-403. Third Generation Biofuels via Direct Cellulose Fermentation. International Journal of Molecular Sciences, 2008, 9, 1342-1360. Microbial biogeography of 925 geothermal springs in New Zealand. Nature Communications, 2018, 9, 2876. Two Chloroflavi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME Journal, 2019, 13, 1801-1813. Persistence of the dominant soil phylum <i>cis</i> Acidobacteria <i>c(is</i> by trace gas scavenging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10497-10502. Micotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME Journal, 2017, 11, 2599-2610. Challenges for biohydrogen production via direct lignocellulose fermentation. International Journal of Hydrogen Energy, 2009, 34, 7390-7403. The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME Journal, 2017, 11, 125-137. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2and ethanol-producing bacteria. BMC Microbiology, 2012, 12, 295. Formate synthesis byClostridium thermocellumduring anaerobic fermentation. Canadian Journal of Microbiology, 2006, 52, 681-688. Mixed culture polyhydroxyalkanoate (PHA) synthesis from nutrient rich wet oxidation Ilquors. Water Research, 2018, 140, 1-11. Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405. Internobiology, 2009, 48, 252-266. Thermophilic methanotrophs: In hot pursuit. FEMS Microbiology Ecology, 2019, 95, . Rele of transcription and enzyme activities in redistribution of carbon and electron flux in response to V2 and H2 sparging of aparbatch cultures of Clostridium thermocellum ATCC 27405. Applied Microbiology, 2019, 48, 15802. Pychogen Oxidation Inf	source for microbial growth and survival. ISME Journal, 2016, 10, 761-777. 11 Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 2017, 13.7 13.7 Third Generation Biofuels via Direct Cellulose Fermentation. International Journal of Molecular Sciences, 2008, 9, 1342-1360. 1.8 Microbial biogeography of 925 geothermal springs in New Zealand. Nature Communications, 2018, 9, 2876. 5.8 Two Chloroflexi classes Independently evolved the ability to persist on atmospheric hydrogen and carbon monotide. ISME Journal, 2019, 13, 1301-1813. 4.4 Persistence of the dominant soil phylum (i) Acidobacteria (i): by trace gas scavenging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10497-10502. 3.3 Misotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME Journal, 2017, 11, 2599-2610. 4.4 Challenges for biohydrogen production via direct Ignocellulose fermentation. International Journal of Hydrogen Energy, 2009, 34, 7390-7405. 3.8 The methanogenic radios cofactor F420 is widely synthesized by aerobic soil bacteria. ISME Journal, 2017, 11, 25137. 4.4 Challenges for biohydrogen production yields: a meta-analysis of major catabolic pathways among select H2and ethanol-production yields: a meta-analysis of major catabolic pathways in a merces springe. Proceeding. 6.8 Formate synthesis byClostridium thermocellum during anaerobic fermentation. Incadian Journal of Microbiology, 2006, 52, 681-688.<

#	Article	IF	CITATIONS
19	RNA stable isotope probing and highâ€ŧhroughput sequencing to identify active microbial community members in a methaneâ€driven denitrifying biofilm. Journal of Applied Microbiology, 2022, 132, 1526-1542.	1.4	4
20	Interaction between ferruginous clay sediment and an iron-reducing hyperthermophilic Pyrobaculum sp. in a terrestrial hot spring. FEMS Microbiology Ecology, 2018, 94, .	1.3	2
21	Draft Genome Sequence of Limisphaera ngatamarikiensis NGM72.4 ^T , a Moderately Alkaliphilic Thermophile Belonging to the Class <i>Verrucomicrobiae</i> . Microbiology Resource Announcements, 2020, 9, .	0.3	2