Jana Hoffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6102007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of Sepsis in the Intensive Care Unit With Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Medical Informatics, 2016, 4, e28.	2.6	331
2	Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. BMJ Open, 2018, 8, e017833.	1.9	223
3	Pediatric Severe Sepsis Prediction Using Machine Learning. Frontiers in Pediatrics, 2019, 7, 413.	1.9	64
4	Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Annals of Medicine and Surgery, 2016, 11, 52-57.	1.1	60
5	Mortality prediction model for the triage of COVID-19, pneumonia, and mechanically ventilated ICU patients: A retrospective study. Annals of Medicine and Surgery, 2020, 59, 207-216.	1.1	55
6	Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS). Journal of Critical Care, 2020, 60, 96-102.	2.2	54
7	High-performance detection and early prediction of septic shock for alcohol-use disorder patients. Annals of Medicine and Surgery, 2016, 8, 50-55.	1.1	51
8	Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals. BMJ Health and Care Informatics, 2020, 27, e100109.	3.0	44
9	Using Transfer Learning for Improved Mortality Prediction in a Data-Scarce Hospital Setting. Biomedical Informatics Insights, 2017, 9, 117822261771299.	4.6	39
10	Prediction of diabetic kidney disease with machine learning algorithms, upon the initial diagnosis of type 2 diabetes mellitus. BMJ Open Diabetes Research and Care, 2022, 10, e002560.	2.8	32
11	Convolutional Neural Network Model for Intensive Care Unit Acute Kidney Injury Prediction. Kidney International Reports, 2021, 6, 1289-1298.	0.8	29
12	A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study. JMIR Public Health and Surveillance, 2020, 6, e22400.	2.6	28
13	Machine-Learning-Based Laboratory Developed Test for the Diagnosis of Sepsis in High-Risk Patients. Diagnostics, 2019, 9, 20.	2.6	26
14	Cost and mortality impact of an algorithm-driven sepsis prediction system. Journal of Medical Economics, 2017, 20, 646-651.	2.1	22
15	Validation of a machine learning algorithm for early severe sepsis prediction: a retrospective study predicting severe sepsis up to 48Åh in advance using a diverse dataset from 461 US hospitals. BMC Medical Informatics and Decision Making, 2020, 20, 276.	3.0	22
16	A Machine Learning Approach to Predict Deep Venous Thrombosis Among Hospitalized Patients. Clinical and Applied Thrombosis/Hemostasis, 2021, 27, 107602962199118.	1.7	20
17	Early prediction of severe acute pancreatitis using machine learning. Pancreatology, 2022, 22, 43-50.	1.1	17
18	Predicting ventilator-associated pneumonia with machine learning. Medicine (United States), 2021, 100, e26246	1.0	13

Jana Hoffman

#	Article	IF	CITATIONS
19	Prediction of short-term mortality in acute heart failure patients using minimal electronic health record data. BioData Mining, 2021, 14, 23.	4.0	12
20	Early prediction of central line associated bloodstream infection using machine learning. American Journal of Infection Control, 2022, 50, 440-445.	2.3	12
21	A machine learning approach to predicting risk of myelodysplastic syndrome. Leukemia Research, 2021, 109, 106639.	0.8	11
22	Predicting Falls in Long-term Care Facilities: Machine Learning Study. JMIR Aging, 2022, 5, e35373.	3.0	11
23	ls Machine Learning a Better Way to Identify COVID-19 Patients Who Might Benefit from Hydroxychloroquine Treatment?—The IDENTIFY Trial. Journal of Clinical Medicine, 2020, 9, 3834.	2.4	8
24	Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study. JMIR Formative Research, 2021, 5, e28028.	1.4	6
25	Application of deep learning to identify COVID-19 infection in posteroanterior chest X-rays. Clinical Imaging, 2021, 80, 268-273.	1.5	3
26	A comparative analysis of machine learning approaches to predict C. difficile infection in hospitalized patients. American Journal of Infection Control, 2022, 50, 250-257.	2.3	2