
Young-Wook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing and properties of macroporous silicon carbide ceramics: A review. Journal of Asian Ceramic Societies, 2013, 1, 220-242.	1.0	304
2	High-temperature strength of silicon carbide ceramics sintered with rare-earth oxide and aluminum nitride. Acta Materialia, 2007, 55, 727-736.	3.8	155
3	Effect of Initial αâ€Phase Content on Microstructure and Mechanical Properties of Sintered Silicon Carbide. Journal of the American Ceramic Society, 1998, 81, 3136-3140.	1.9	150
4	Microstructural Development of Silicon Carbide Containing Large Seed Grains. Journal of the American Ceramic Society, 1997, 80, 99-105.	1.9	141
5	Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two tep Sintering. Journal of the American Ceramic Society, 2003, 86, 1803-1805.	1.9	141
6	Grain Growth and Fracture Toughness of Fine-Grained Silicon Carbide Ceramics. Journal of the American Ceramic Society, 1995, 78, 3145-3148.	1.9	134
7	Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates. Journal of the European Ceramic Society, 2008, 28, 1029-1035.	2.8	131
8	Fabrication of silicon carbide nanoceramics. Journal of Materials Research, 1996, 11, 1601-1604.	1.2	101
9	Processing of polysiloxane-derived porous ceramics: a review. Science and Technology of Advanced Materials, 2010, 11, 044303.	2.8	101
10	Porosity control of porous silicon carbide ceramics. Journal of the European Ceramic Society, 2009, 29, 2867-2872.	2.8	94
11	Relationship between Microstructure and Fracture Toughness of Toughened Silicon Carbide Ceramics. Journal of the American Ceramic Society, 2001, 84, 1347-1353.	1.9	91
12	Fabrication of Open-Cell, Microcellular Silicon Carbide Ceramics by Carbothermal Reduction. Journal of the American Ceramic Society, 2005, 88, 2949-2951.	1.9	84
13	Microstructure and Thermal Conductivity of Silicon Carbide with Yttria and Scandia. Journal of the American Ceramic Society, 2014, 97, 923-928.	1.9	83
14	Title is missing!. Journal of Materials Science, 1997, 32, 1937-1942.	1.7	81
15	Steam-Chest Molding of Expanded Polypropylene Foams. 2. Mechanism of Interbead Bonding. Industrial & Engineering Chemistry Research, 2011, 50, 5523-5531.	1.8	79
16	Effects of the initial α-SiC content on the microstructure, mechanical properties, and permeability of macroporous silicon carbide ceramics. Journal of the European Ceramic Society, 2012, 32, 1283-1290.	2.8	79
17	Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 464, 129-134.	2.6	78
18	Fineâ€Grained Silicon Carbide Ceramics with Oxynitride Glass. Journal of the American Ceramic Society, 1999. 82. 2731-2736.	1.9	73

#	Article	IF	CITATIONS
19	Microstructure and Mechanical Properties of alphaâ€Silicon Carbide Sintered with Yttriumâ€Aluminum Garnet and Silica. Journal of the American Ceramic Society, 1999, 82, 441-444.	1.9	73
20	Processing of closed-cell silicon oxycarbide foams from a preceramic polymer. Journal of Materials Science, 2004, 39, 5647-5652.	1.7	73
21	Heat-resistant silicon carbide with aluminum nitride and scandium oxide. Acta Materialia, 2005, 53, 4701-4708.	3.8	72
22	Pressureless Sintering of Alumina-Titanium Carbide Composites. Journal of the American Ceramic Society, 1989, 72, 1333-1337.	1.9	71
23	Crackâ€Healing Behavior of Liquidâ€Phaseâ€Sintered Silicon Carbide Ceramics. Journal of the American Ceramic Society, 2003, 86, 465-470.	1.9	68
24	Highâ€Temperature Strength of Liquidâ€Phaseâ€Sintered SiC with AlN and Re ₂ O ₃ (RE) Ţį ĘTQq() 0.0 rgBT /Ov
25	Processing and mechanical properties of porous silica-bonded silicon carbide ceramics. Metals and Materials International, 2005, 11, 351-355.	1.8	66
26	Effect of template size on microstructure and strength of porous silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2008, 116, 1159-1163.	0.5	66
27	Processing of Porous Silicon Carbide Ceramics from Carbonâ€Filled Polysiloxane by Extrusion and Carbothermal Reduction. Journal of the American Ceramic Society, 2008, 91, 1361-1364.	1.9	65
28	Effects of porosity on electrical and thermal conductivities of porous SiC ceramics. Journal of the European Ceramic Society, 2020, 40, 996-1004.	2.8	65
29	Processing of microcellular preceramics using carbon dioxide. Composites Science and Technology, 2003, 63, 2371-2377.	3.8	63
30	Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics. Journal of the European Ceramic Society, 2017, 37, 3475-3481.	2.8	63
31	Oxidation Behavior of Liquid-Phase Sintered Silicon Carbide with Aluminum Nitride and Rare-Earth Oxides (Re2O3, where Re = Y, Er, Yb). Journal of the American Ceramic Society, 2002, 85, 2281-2286.	1.9	61
32	Fabrication of Microcellular Ceramics Using Gaseous Carbon Dioxide. Journal of the American Ceramic Society, 2003, 86, 2231-2233.	1.9	61
33	A simple pressing route to closed-cell microcellular ceramics. Scripta Materialia, 2005, 53, 921-925.	2.6	61
34	Steam-Chest Molding of Expanded Polypropylene Foams. 1. DSC Simulation of Bead Foam Processing. Industrial & Engineering Chemistry Research, 2010, 49, 9822-9829.	1.8	61
35	Electrodischarge-Machinable Silicon Carbide Ceramics Sintered with Yttrium Nitrate. Journal of the American Ceramic Society, 2011, 94, 991-993.	1.9	60
36	Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride. Journal of the European Ceramic Society, 2016, 36, 2659-2665.	2.8	59

#	Article	IF	CITATIONS
37	Heatâ€Resistant Silicon Carbide with Aluminum Nitride and Erbium Oxide. Journal of the American Ceramic Society, 2001, 84, 2060-2064.	1.9	58
38	Influence of small amount of sintering additives on unlubricated sliding wear properties of SiC ceramics. Ceramics International, 2011, 37, 3599-3608.	2.3	58
39	Mechanism of grain growth in liquid-phase-sintered β–SiC. Journal of Materials Research, 1999, 14, 4291-4293.	1.2	56
40	Mechanical properties of hot-forged silicon carbide ceramics. Scripta Materialia, 2005, 52, 153-156.	2.6	56
41	Processing of microcellular silicon carbide ceramics with a duplex pore structure. Journal of the European Ceramic Society, 2010, 30, 2671-2676.	2.8	55
42	Effect of βâ€ŧoâ€Î± Phase Transformation on the Microstructural Development and Mechanical Properties of Fineâ€Grained Silicon Carbide Ceramics. Journal of the American Ceramic Society, 2001, 84, 945-950.	1.9	54
43	Development of Al2O3–SiC composite tool for machining application. Ceramics International, 2004, 30, 2081-2086.	2.3	54
44	Temperature Dependence of Electrical Resistivity (4–300ÂK) in Aluminum―and Boronâ€Doped <scp><scp>SiC</scp></scp> Ceramics. Journal of the American Ceramic Society, 2013, 96, 2525-2530.	1.9	54
45	Processing and properties of silica-bonded porous nano-SiC ceramics with extremely low thermal conductivity. Journal of the European Ceramic Society, 2020, 40, 2623-2633.	2.8	53
46	Processing of Microcellular Mullite. Journal of the American Ceramic Society, 2005, 88, 3311-3315.	1.9	52
47	High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia. Journal of the American Ceramic Society, 2017, 100, 1290-1294.	1.9	52
48	SiC-TiC and SiC-TiB2 composites densified by liquid-phase sintering. Journal of Materials Science, 1996, 31, 6223-6228.	1.7	51
49	Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria. Journal of the European Ceramic Society, 2015, 35, 4137-4142.	2.8	51
50	High interfacial thermal resistance induced low thermal conductivity in porous SiC-SiO2 composites with hierarchical porosity. Journal of the European Ceramic Society, 2020, 40, 594-602.	2.8	50
51	Microstructural Control for Strengthening of Silicon Carbide Ceramics. Journal of the American Ceramic Society, 1999, 82, 2924-2926.	1.9	49
52	Effect of initial particle size on microstructure of liquid-phase sintered α-silicon carbide. Journal of the European Ceramic Society, 2000, 20, 945-949.	2.8	48
53	Influence of Y2O3 addition on electrical properties of β-SiC ceramics sintered in nitrogen atmosphere. Journal of the European Ceramic Society, 2012, 32, 4401-4406.	2.8	48
54	Electrical and thermal properties of SiC–AlN ceramics without sintering additives. Journal of the European Ceramic Society, 2015, 35, 2715-2721.	2.8	48

#	Article	IF	CITATIONS
55	Control of Electrical Resistivity in Silicon Carbide Ceramics Sintered with Aluminum Nitride and Yttria. Journal of the American Ceramic Society, 2013, 96, 3463-3469.	1.9	47
56	Effect of reactant depletion on the microstructure and preferred orientation of polycrystalline SiC films by chemical vapor deposition. Thin Solid Films, 1995, 266, 192-197.	0.8	46
57	Electrical properties of liquid-phase sintered silicon carbide ceramics: a review. Critical Reviews in Solid State and Materials Sciences, 2020, 45, 66-84.	6.8	46
58	Tribological Behavior of Silicon Carbide Ceramics - A Review. Journal of the Korean Ceramic Society, 2016, 53, 581-596.	1.1	46
59	Mechanical properties of electrically conductive silicon carbide ceramics. Ceramics International, 2014, 40, 10577-10582.	2.3	45
60	Electrical conductivity of dense, bulk silicon-oxycarbide ceramics. Journal of the European Ceramic Society, 2015, 35, 1355-1360.	2.8	45
61	Mechanical and Thermal Properties of Pressureless Sintered Silicon Carbide Ceramics with Alumina–Yttria–Calcia. Journal of the American Ceramic Society, 2016, 99, 1735-1741.	1.9	45
62	Structural and Optical Characteristics of Crystalline Silicon Carbide Nanoparticles Synthesized by Carbothermal Reduction. Journal of the American Ceramic Society, 2009, 92, 424-428.	1.9	44
63	Erosion behavior of SiC–WC composites. Ceramics International, 2014, 40, 6829-6839.	2.3	44
64	Processing and properties of glass-bonded silicon carbide membrane supports. Journal of the European Ceramic Society, 2017, 37, 1225-1232.	2.8	44
65	Strength and fracture toughness of in situ-toughened silicon carbide. Journal of Materials Science, 1997, 32, 4777-4782.	1.7	43
66	Effect of alkaline earth metal oxide addition on flexural strength of porous mullite-bonded silicon carbide ceramics. Journal of Materials Science, 2010, 45, 6841-6844.	1.7	43
67	Title is missing!. Journal of Materials Science Letters, 2001, 20, 143-146.	0.5	42
68	Effect of WC addition on sliding wear behavior of SiC ceramics. Ceramics International, 2015, 41, 3427-3437.	2.3	42
69	Effect of polycarbosilane addition on mechanical properties of hot-pressed silicon carbide. Journal of Materials Science, 1992, 27, 4746-4750.	1.7	41
70	<i>R</i> urve Behavior of Silicon Nitride–Titanium Nitride Composites. Journal of the American Ceramic Society, 1997, 80, 2681-2684.	1.9	41
71	Electrical and Thermal Properties of <scp><scp>SiC</scp> </scp> Ceramics Sintered with Yttria and Nitrides. Journal of the American Ceramic Society, 2014, 97, 2943-2949.	1.9	41
72	Tribological characteristics of SiC ceramics sintered with a small amount of yttria. Ceramics International, 2015, 41, 14780-14789.	2.3	41

Young-Wook Kim

#	Article	IF	CITATIONS
73	Effects of Y ₂ O ₃ – <scp>RE</scp> ₂ O ₃ (<scp>RE</scp> = American Ceramic Society, 2016, 99, 265-272.	=) Tj ETQq1 1.9	1 0.784314 41
74	Influence of Powder Characteristics on Liquid Phase Sintering of Silicon Carbide. Journal of the Ceramic Society of Japan, 1995, 103, 257-261.	1.3	40
75	In S/Yu-Toughened Silicon Carbide-Titanium Carbide Composites. Journal of the American Ceramic Society, 1996, 79, 1711-1713.	1.9	40
76	Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics. Ceramics International, 2019, 45, 21270-21277.	2.3	40
77	Oxidation behavior of hot-pressed Si3N4 with Re2O3 (Re=Y, Yb, Er, La). Journal of the European Ceramic Society, 1999, 19, 2757-2762.	2.8	39
78	Porous sodium borate-bonded SiC ceramics. Ceramics International, 2013, 39, 6827-6834.	2.3	39
79	Electrical resistivity of α-SiC ceramics sintered with Al2O3 or AlN additives. Journal of the European Ceramic Society, 2014, 34, 1695-1701.	2.8	39
80	Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics. Journal of the European Ceramic Society, 2021, 41, 4006-4015.	2.8	39
81	Grain boundary crystallization during furnace cooling of α-SiC sintered with Y2O3–Al2O3–CaO. Journal of the European Ceramic Society, 2006, 26, 1267-1272.	2.8	38
82	High-temperature strength of a thermally conductive silicon carbide ceramic sintered with yttria and scandia. Journal of the European Ceramic Society, 2016, 36, 3755-3760.	2.8	38
83	Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability. Journal of Membrane Science, 2017, 540, 430-439.	4.1	38
84	Electrical resistivity of silicon carbide ceramics sintered with 1 wt% aluminum nitride and rare earth oxide. Journal of the European Ceramic Society, 2012, 32, 4427-4434.	2.8	37
85	Highly conductive SiC ceramics containing Ti2CN. Journal of the European Ceramic Society, 2014, 34, 1149-1154.	2.8	37
86	Effects of carbon addition on the electrical properties of bulk silicon-oxycarbide ceramics. Journal of the European Ceramic Society, 2016, 36, 2705-2711.	2.8	37
87	Processing of alumina-coated clay–diatomite composite membranes for oily wastewater treatment. Ceramics International, 2016, 42, 5024-5035.	2.3	37
88	Ceramic Membranes Prepared from a Silicate and Clay-mineral Mixture for Treatment of Oily Wastewater. Clays and Clay Minerals, 2015, 63, 222-234.	0.6	36
89	Intergranular glassy phase free SiC ceramics retains strength at 1500 °C. Scripta Materialia, 2004, 50, 1203-1207.	2.6	35
90	Cross-linking behavior of a polysiloxane in preceramic foam processing. Journal of Materials Science, 2004, 39, 4913-4915.	1.7	35

#	Article	IF	CITATIONS
91	Low temperature processing of highly porous silicon carbide ceramics with improved flexural strength. Journal of Materials Science, 2010, 45, 282-285.	1.7	35
92	R-curve behaviour and microstructure of sintered silicon nitride. Journal of Materials Science, 1995, 30, 5178-5184.	1.7	34
93	Fabrication of porous preceramic polymers using carbon dioxide. Journal of Materials Science Letters, 2002, 21, 1667-1669.	0.5	34
94	Microstructure and high-temperature strength of silicon carbide with 2000 ppm yttria. Journal of the European Ceramic Society, 2017, 37, 4449-4455.	2.8	34
95	Pressureless sintering of SiC-TiC composites with improved fracture toughness. Journal of Materials Science, 2000, 35, 5569-5574.	1.7	33
96	Effect of additive composition on microstructure and strength of porous silicon carbide ceramics. Journal of Materials Science, 2009, 44, 4482-4486.	1.7	33
97	Electrical, thermal and mechanical properties of silicon carbide–silicon nitride composites sintered with yttria and scandia. Journal of the European Ceramic Society, 2015, 35, 77-86.	2.8	33
98	In situ enhancement of toughness of SiC—TiB2 composites. Journal of Materials Science, 1998, 33, 211-214.	1.7	32
99	Fabrication of dense bulk nano-Si3N4 ceramics without secondary crystalline phase. Scripta Materialia, 2006, 54, 615-619.	2.6	32
100	Processing of Porous Silicon Oxycarbide Ceramics from Extruded Blends of Polysiloxane and Polymer Microbead. Journal of the Ceramic Society of Japan, 2007, 115, 419-424.	1.3	32
101	Engineering porosity in silicon carbide ceramics. Journal of Materials Science, 2010, 45, 2808-2815.	1.7	32
102	Improved electrical and thermal conductivities of polysiloxane-derived silicon oxycarbide ceramics by barium addition. Journal of the European Ceramic Society, 2018, 38, 487-493.	2.8	32
103	Mechanical and thermal properties of silicon carbide ceramics with yttria–scandia–magnesia. Journal of the European Ceramic Society, 2019, 39, 144-149.	2.8	32
104	Refined Continuum Model on the Behavior of Intergranular Films in Silicon Nitride Ceramics. Journal of the American Ceramic Society, 2000, 83, 2821-2827.	1.9	31
105	Effective Nitrogen Doping for Fabricating Highly Conductive <scp><scp>βâ€&iC</scp></scp> Ceramics. Journal of the American Ceramic Society, 2011, 94, 3216-3219.	1.9	31
106	Open-celled silicon carbide foams with high porosity from boron-modified polycarbosilanes. Journal of the European Ceramic Society, 2019, 39, 5114-5122.	2.8	31
107	Tribology of WC reinforced SiC ceramics: Influence of counterbody. Friction, 2019, 7, 129-142.	3.4	31
108	Effect of Annealing Conditions on Microstructural Development and Phase Transformation in Silicon Carbide. Journal of the American Ceramic Society, 2000, 83, 1369-1374.	1.9	30

7

#	Article	IF	CITATIONS
109	Processing of microcellular cordierite ceramics from a preceramic polymer. Scripta Materialia, 2006, 54, 1521-1525.	2.6	30
110	Low-temperature processing of porous SiC ceramics. Journal of Materials Science, 2013, 48, 1973-1979.	1.7	30
111	High temperature strength of silicon carbide sintered with 1 wt.% aluminum nitride and lutetium oxide. Journal of the European Ceramic Society, 2013, 33, 345-350.	2.8	30
112	Low-cost clay-based membranes for oily wastewater treatment. Journal of the Ceramic Society of Japan, 2014, 122, 788-794.	0.5	30
113	Electrically conductive SiC-BN composites. Journal of the European Ceramic Society, 2016, 36, 3879-3887.	2.8	30
114	Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration. Journal of Materials Science, 1993, 28, 3866-3868.	1.7	29
115	Electrically conductive SiC ceramics processed by pressureless sintering. International Journal of Applied Ceramic Technology, 2019, 16, 843-849.	1.1	29
116	Effects of carbon and silicon on electrical, thermal, and mechanical properties of porous silicon carbide ceramics. Ceramics International, 2020, 46, 15594-15603.	2.3	29
117	Texture in Silicon Nitride Seeded with Silicon Nitride Whiskers of Different Sizes. Journal of the American Ceramic Society, 2003, 86, 1008-1013.	1.9	28
118	Microstructure stability of fine-grained silicon carbide ceramics during annealing. Journal of Materials Science, 2004, 39, 3613-3617.	1.7	28
119	Silicon carbide particle formation from carbon black -polymethylsilsesquioxane mixtures with melt pressing. Journal of the Ceramic Society of Japan, 2008, 116, 121-125.	0.5	28
120	Electrical properties of SiC ceramics sintered with 0.5wt% AlN–RE2O3 (RE=Y, Nd, Lu). Ceramics International, 2014, 40, 8885-8890.	2.3	28
121	Effect of additive composition on mechanical properties of pressureless sintered silicon carbide ceramics sintered with alumina, aluminum nitride and yttria. Metals and Materials International, 2015, 21, 525-530.	1.8	28
122	Micro-electrical discharge machining characteristics of newly developed conductive SiC ceramic. Ceramics International, 2015, 41, 3490-3496.	2.3	28
123	Highly resistive SiC ceramics sintered with Al2O3-AlN-Y2O3 additions. Ceramics International, 2017, 43, 5343-5346.	2.3	28
124	Processing of aluminaâ€coated glassâ€bonded silicon carbide membranes for oily wastewater treatment. International Journal of Applied Ceramic Technology, 2017, 14, 692-702.	1.1	28
125	Low temperature pressureless sintering of silicon carbide ceramics with alumina–yttria–magnesia-calcia. Journal of the Ceramic Society of Japan, 2019, 127, 207-214.	0.5	28
126	Thermal and Mechanical Properties of SiC–TiC _{0.5} N _{0.5} Composites. Journal of the American Ceramic Society, 2015, 98, 616-623.	1.9	27

#	Article	IF	CITATIONS
127	Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia. Journal of the European Ceramic Society, 2018, 38, 445-452.	2.8	27
128	Effect of inert filler addition on pore size and porosity of closed-cell silicon oxycarbide foams. Journal of Materials Science, 2004, 39, 3513-3515.	1.7	26
129	Effect of inert filler addition on microstructure and strength of porous SiC ceramics. Journal of Materials Science, 2009, 44, 1404-1406.	1.7	26
130	Effect of annealing on mechanical properties of self-reinforced alpha-silicon carbide. Journal of Materials Science, 1999, 34, 2325-2330.	1.7	25
131	Electrical and thermal properties of silicon carbide–boron nitride composites prepared without sintering additives. Journal of the European Ceramic Society, 2015, 35, 4423-4429.	2.8	25
132	Electrical and mechanical properties of pressureless sintered SiC-Ti2CN composites. Journal of the European Ceramic Society, 2018, 38, 3064-3072.	2.8	25
133	Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels. Journal of the European Ceramic Society, 2019, 39, 3971-3980.	2.8	25
134	Texture Development in Silicon Nitride–Silicon Oxynitride <i>In Situ</i> Composites via Superplastic Deformation. Journal of the American Ceramic Society, 2000, 83, 3147-3152.	1.9	24
135	Effect of processing on densification of nanostructured SiC ceramics fabricated by two-step sintering. Journal of Materials Science, 2004, 39, 3801-3803.	1.7	24
136	Melt spinning and metal chloride vapor curing process on polymethylsilsesquioxane as SiOC fiber precursor. Journal of Applied Polymer Science, 2009, 114, 2600-2607.	1.3	24
137	Effect of aluminum source on flexural strength of mullite-bonded porous silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2010, 118, 13-18.	0.5	24
138	Effects of initial particle size on mechanical, thermal, and electrical properties of porous SiC ceramics. Ceramics International, 2021, 47, 8668-8676.	2.3	24
139	Highâ€ŧemperature strength of liquidâ€phaseâ€sintered silicon carbide ceramics: A review. International Journal of Applied Ceramic Technology, 2022, 19, 130-148.	1.1	24
140	Effect of initial α-phase content of SiC on microstructure and mechanical properties of SiC–TiC composites. Journal of the European Ceramic Society, 2001, 21, 93-98.	2.8	23
141	Processing of Highly Porous, Open-Cell, Microcellular Silicon Carbide Ceramics by Expansion Method Using Expandable Microspheres. Journal of the Ceramic Society of Japan, 2006, 114, 549-553.	1.3	23
142	Lowâ€Temperature Processing of Silicon Oxycarbideâ€Bonded Silicon Carbide. Journal of the American Ceramic Society, 2010, 93, 2463-2466.	1.9	23
143	Effect of aluminum hydroxide content on porosity and strength of porous mullite-bonded silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 367-370.	0.5	23
144	Processing highly porous SiC ceramics using poly(ether-co-octene) and hollow microsphere templates. Journal of Materials Science, 2011, 46, 3664-3667.	1.7	23

#	Article	IF	CITATIONS
145	Processing of silicon-derived silica-bonded silicon carbide membrane supports. Ceramics International, 2019, 45, 2161-2169.	2.3	23
146	R-curve behaviour of sintered silicon nitride. Journal of Materials Science, 1995, 30, 4043-4048.	1.7	22
147	Effect of additives on mechanical properties of macroporous silicon carbide ceramics. Metals and Materials International, 2010, 16, 399-405.	1.8	22
148	Room and high temperature reciprocated sliding wear behavior of SiC-WC composites. Ceramics International, 2017, 43, 16827-16834.	2.3	22
149	Grain-growth-induced high electrical conductivity in SiC–BN composites. Ceramics International, 2018, 44, 16394-16399.	2.3	22
150	Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics. Journal of the European Ceramic Society, 2020, 40, 234-240.	2.8	22
151	Multiple thermal resistance induced extremely low thermal conductivity in porous SiC-SiO2 ceramics with hierarchical porosity. Journal of the European Ceramic Society, 2021, 41, 1171-1180.	2.8	22
152	Superplastic behavior of liquid-phase sintered β-SiC prepared with oxynitride glasses in an N2 atmosphere. Journal of the European Ceramic Society, 2002, 22, 263-270.	2.8	21
153	Title is missing!. Journal of Materials Science, 2003, 38, 1117-1121.	1.7	21
154	Processing of Open ell Silicon Carbide Foams by Steam Chest Molding and Carbothermal Reduction. Journal of the American Ceramic Society, 2011, 94, 344-347.	1.9	21
155	Fe doping and magnetic properties of zincblende SiC ceramics. Journal of the European Ceramic Society, 2012, 32, 1149-1155.	2.8	21
156	Effect of in situ-synthesized nano-size SiC addition on density and electrical resistivity of liquid-phase sintered silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 965-967.	0.5	20
157	R-curve behaviour and microstructure of liquid-phase sintered α-SiC. Journal of Materials Science, 2000, 35, 3693-3697.	1.7	19
158	Effect of Heat Treatments on the Crack-Healing and Static Fatigue Behavior of Silicon Carbide Sintered with Sc2O3 and AlN. Journal of the American Ceramic Society, 2005, 88, 3478-3482.	1.9	19
159	Effect of additive composition on microstructure and mechanical properties of SiC ceramics sintered with small amount of RE2O3 (RE: Sc, Lu, Y) and AlN. Journal of Materials Science, 2009, 44, 5939-5943.	1.7	19
160	Effect of SiC particle size on flexural strength of porous self-bonded SiC ceramics. Metals and Materials International, 2011, 17, 599-605.	1.8	19
161	Electrical, thermal, and mechanical properties of porous SiC-nitride composites. Journal of the European Ceramic Society, 2020, 40, 3851-3862.	2.8	19
162	Effect of additive content on the mechanical and thermal properties of pressureless liquid-phase sintered SiC. Journal of Asian Ceramic Societies, 2020, 8, 448-459.	1.0	19

#	Article	IF	CITATIONS
163	Microstructure and mechanical properties of self-Reinforced alpha–Silicon carbide. Ceramics International, 1998, 24, 489-495.	2.3	18
164	Fabrication of silicon oxycarbide foams from extruded blends of polysiloxane, low-density polyethylene (LDPE), and polymer microbead. Metals and Materials International, 2007, 13, 521-525.	1.8	18
165	Effect of submicron silicon carbide powder addition on the processing and strength of reaction-sintered mullite-silicon carbide composites. Journal of the Ceramic Society of Japan, 2009, 117, 421-425.	0.5	18
166	Effect of forming methods on porosity and compressive strength of polysiloxane-derived porous silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2012, 120, 199-203.	0.5	18
167	Electrical and thermal properties of SiC-Zr 2 CN composites sintered with Y 2 O 3 -Sc 2 O 3 additives. Journal of the European Ceramic Society, 2017, 37, 477-484.	2.8	18
168	Microstructure and Fracture Toughness of In-situ Toughened SiC- TiC Composites. Journal of Materials Science Letters, 1998, 17, 1081-1084.	0.5	17
169	Effects of additive amount on microstructure and fracture toughness of SiCî—,TiB2 composites. Ceramics International, 1998, 24, 299-305.	2.3	17
170	Microstructural development of liquid-phase-sintered silicon carbide during annealing with uniaxial pressure. Journal of the European Ceramic Society, 2002, 22, 1031-1037.	2.8	17
171	Effect of impingement angle and WC content on high temperature erosion behavior of SiC-WC composites. International Journal of Refractory Metals and Hard Materials, 2017, 68, 166-171.	1.7	17
172	Highly electrically and thermally conductive silicon carbide-graphene composites with yttria and scandia additives. Journal of the European Ceramic Society, 2020, 40, 241-250.	2.8	17
173	Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics. Journal of the Korean Ceramic Society, 2009, 46, 488-492.	1.1	17
174	Texture and Fracture Toughness Anisotropy in Silicon Carbide. Journal of the American Ceramic Society, 1998, 81, 1669-1672.	1.9	16
175	Sinterability of Nano-Sized Silicon Carbide Powders. Journal of the Ceramic Society of Japan, 2006, 114, 681-685.	1.3	16
176	Fabrication of cellular and microcellular ceramics with controllable open-cell content from polysiloxane-LDPE blends: I. Compounding and Foaming. Journal of Materials Science, 2007, 42, 2854-2861.	1.7	16
177	Effects of Y 2 O 3 –RE 2 O 3 (RE = Sm, Gd, Lu) additives on electrical and mechanical properties of SiC ceramics containing Ti 2 CN. Journal of the European Ceramic Society, 2016, 36, 2997-3003.	2.8	16
178	Direct bonding of silicon carbide ceramics sintered with yttria. Journal of the European Ceramic Society, 2019, 39, 4487-4494.	2.8	16
179	Effects of initial αâ€phase content on properties of pressureless solidâ€state sintered SiC ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 703-712.	1.1	16
180	Effect of carbon content on electrical, thermal, and mechanical properties of porous SiC ceramics with B4C and C additives. Journal of the European Ceramic Society, 2022, 42, 4076-4085.	2.8	16

#	Article	IF	CITATIONS
181	Influence of Silica Content on Liquid Phase Sintering of Silicon Carbide with Yttrium-Aluminum Garnet. Journal of the Ceramic Society of Japan, 1996, 104, 816-818.	1.3	15
182	Fabrication of Porous Silicon Oxycarbide Ceramics by Foaming Polymer Liquid and Compression Molding. Journal of the Ceramic Society of Japan, 2003, 111, 863-864.	1.3	15
183	Mechanical Properties and Contact Damages of Nanostructured Silicon Carbide Ceramics. Journal of the Ceramic Society of Japan, 2007, 115, 304-309.	1.3	15
184	Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics. Journal of the Ceramic Society of Japan, 2012, 120, 370-374.	0.5	15
185	Fabrication of lightweight, flexible polyetherimide/nickel composite foam with electromagnetic interference shielding effectiveness reaching 103 dB. Journal of Cellular Plastics, 2014, 50, 537-550.	1.2	15
186	Joining of silicon carbide ceramics using a silicon carbide tape. International Journal of Applied Ceramic Technology, 2019, 16, 1295-1303.	1.1	15
187	Influence of sintering atmosphere and BN additives on microstructure and properties of porous SiC ceramics. Journal of the European Ceramic Society, 2021, 41, 6925-6933.	2.8	15
188	Processing of Kaolin-Based Microfiltration Membranes. Journal of the Korean Ceramic Society, 2013, 50, 341-347.	1.1	15
189	Pressureless sintering of Al2O3-SiC whisker composites. Journal of Materials Science, 1991, 26, 1316-1320.	1.7	14
190	Intergranular film thickness of self-reinforced silicon carbide ceramics. Journal of the European Ceramic Society, 2004, 24, 3795-3800.	2.8	14
191	Effect of alkaline earth additives on the flexural strength of silicon oxycarbide-bonded silicon carbide ceramics. Ceramics International, 2013, 39, 2083-2091.	2.3	14
192	Conductive SiC ceramics fabricated by spark plasma sintering. Ceramics International, 2016, 42, 17892-17896.	2.3	14
193	Pressureless sintering of fully ceramic microencapsulated fuels. Journal of the European Ceramic Society, 2020, 40, 5180-5185.	2.8	14
194	Mechanical, thermal, and electrical properties of pressureless sintered SiC–AlN ceramics. Ceramics International, 2020, 46, 19264-19273.	2.3	14
195	Fabrication and Mechanical Properties of Silicon Carbideâ€Silicon Nitride Composites with Oxynitride Glass. Journal of the American Ceramic Society, 1999, 82, 1058-1060.	1.9	13
196	Phase Transformation and Texture in Hotâ€Forged or Annealed Liquidâ€Phase‧intered Silicon Carbide Ceramics. Journal of the American Ceramic Society, 2002, 85, 459-465.	1.9	13
197	Process for dense 2D SiC fiber-SiC matrix composites. Metals and Materials International, 2007, 13, 197-200.	1.8	13
198	Effects of M2O3–Y2O3 (M = Sc and Al) additives on electrical conductivity of hot-pressed SiC ceramics. Ceramics International, 2020, 46, 5454-5458.	2.3	13

#	Article	IF	CITATIONS
199	Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics. Journal of the Korean Ceramic Society, 2009, 46, 35-40.	1.1	13
200	Title is missing!. Journal of Materials Science, 2001, 36, 699-702.	1.7	12
201	Processing of Silicon Oxycarbide Foams by Steam Chest Molding and Pyrolysis. Journal of the American Ceramic Society, 2010, 93, 3099-3101.	1.9	12
202	Thermal conductivity and compressive strength anisotropy in vermiculite-ceramic composites with layered structure. Journal of the Ceramic Society of Japan, 2011, 119, 319-321.	0.5	12
203	Low-temperature spark plasma sintering of alumina by using SiC molding set. Journal of the Ceramic Society of Japan, 2016, 124, 1141-1145.	0.5	12
204	Spark Plasma Sintering of Highly Transparent Hydroxyapatite Ceramics. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 547-551.	0.1	12
205	Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content. Journal of the Korean Ceramic Society, 2010, 47, 546-552.	1.1	12
206	Controlling the electrical resistivity of porous silicon carbide ceramics and their applications: A review. International Journal of Applied Ceramic Technology, 2022, 19, 1814-1840.	1.1	12
207	Title is missing!. Journal of Materials Science Letters, 1997, 16, 1384-1386.	0.5	11
208	Processing of Cellular Glasses Using Glass Microspheres. Journal of the American Ceramic Society, 2006, 89, 3262-3265.	1.9	11
209	Effect of filler addition on porosity and strength of polysiloxane-derived porous silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 48-54.	0.5	11
210	Carrier Depletion near the Grain Boundary of a SiC Bicrystal. Scientific Reports, 2019, 9, 18014.	1.6	11
211	Effect of aluminum nitride-scandia content on the microstructural and mechanical properties of sintered silicon carbide ceramics. Metals and Materials International, 2009, 15, 937-941.	1.8	10
212	Processing of porous silicon carbide with toughened strut microstructure. Journal of the Ceramic Society of Japan, 2010, 118, 380-383.	0.5	10
213	Mechanical properties of silicon carbide—in situ zirconium carbonitride composites. International Journal of Applied Ceramic Technology, 2019, 16, 1304-1313.	1.1	10
214	Plastic deformation-induced improved mechanical and thermal properties in hot-forged SiC-TiC composite. Journal of the European Ceramic Society, 2021, 41, 213-224.	2.8	10
215	Processing of fully ceramic microencapsulated fuels with a small amount of additives by hot-pressing. Journal of the European Ceramic Society, 2021, 41, 3980-3990.	2.8	10
216	Low thermal conductivity in porous SiC–SiO2–Al2O3–TiO2 ceramics induced by multiphase thermal resistance. Ceramics International, 2021, 47, 20161-20168.	2.3	10

Young-Wook Kim

#	Article	IF	CITATIONS
217	Fabrication and mechanical properties of silicon carbide–silicon nitride nanocomposites. Journal of Materials Science, 2000, 35, 5885-5890.	1.7	9
218	Microstructure control of liquid-phase sintered β-SiC by seeding. Journal of Materials Science Letters, 2001, 20, 2217-2220.	0.5	9
219	Fabrication of Dense 2D SiC Fiber-SiC Matrix Composites by Slurry Infiltration and a Stacking Process. Metals and Materials International, 2008, 14, 589-591.	1.8	9
220	Mechanical properties of SiC ceramics sintered with RE2O3 (RE: Sc, Lu, Y) and AlN additives. Metals and Materials International, 2010, 16, 229-233.	1.8	9
221	Electrically and thermally conductive SiC ceramics. Journal of the Ceramic Society of Japan, 2014, 122, 963-966.	0.5	9
222	Porosity Control of Porous Zirconia Ceramics. Journal of the Korean Ceramic Society, 2008, 45, 65-68.	1.1	9
223	Effects of SiC whisker addition on mechanical, thermal, and permeability properties of porous silicaâ€bonded SiC ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 1439-1452.	1.1	9
224	Effect of amount and composition of additives on the fracture toughness of silicon nitride. Journal of Materials Science Letters, 1996, 15, 375-377.	0.5	9
225	R-curve behavior of layered silicon carbide ceramics with surface fine microstructure. Journal of Materials Science, 2001, 36, 2189-2193.	1.7	8
226	Microstructure and fracture toughness of liquid-phase-sintered SiC-Ti(CN) composites. Journal of Materials Science Letters, 2002, 21, 883-886.	0.5	8
227	Processing of Porous Cordierite Ceramics with Controlled Porosity. Journal of the Ceramic Society of Japan, 2007, 115, 52-58.	1.3	8
228	Accelerated ceramization of polymethylsilsesquioxane by aluminum―based filler reductant. Applied Organometallic Chemistry, 2010, 24, 612-617.	1.7	8
229	Effect of additive composition on porosity and flexural strength of porous self-bonded SiC ceramics. Journal of the Ceramic Society of Japan, 2010, 118, 810-813.	0.5	8
230	Influence of submicron SiC particle addition on porosity and flexural strength of porous self-bonded silicon carbide. Metals and Materials International, 2011, 17, 435-440.	1.8	8
231	Tuning the electrical, thermal, and mechanical properties of SiC-BN composites using sintering additives. Journal of Asian Ceramic Societies, 2020, 8, 353-364.	1.0	8
232	Effects of Additive Composition and Content on Sintered Density and Compressive Strength of Cordierite Ceramics. Journal of the Korean Ceramic Society, 2007, 44, 230-234.	1.1	8
233	Effect of SiC Filler Content on Microstructure and Flexural Strength of Highly Porous SiC Ceramics Fabricated from Carbon-Filled Polysiloxane. Journal of the Korean Ceramic Society, 2012, 49, 625-630.	1.1	8
234	Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2008, 45, 430-437.	1.1	8

#	Article	IF	CITATIONS
235	Microstructure and properties of porous SiC ceramics with AlN–RE2O3 (RE = Sc, Y, Lu) additives. Journal of the European Ceramic Society, 2022, 42, 4446-4455.	2.8	8
236	Effect of multilayer coating on mechanical properties of Nicalon-fibre-reinforced silicon carbide composites. Journal of Materials Science, 1996, 31, 335-338.	1.7	7
237	Transmission electron microscopy observation in a liquid-phase-sintered SiC with oxynitride glass. Journal of Materials Research, 2001, 16, 2189-2191.	1.2	7
238	Preferred orientation of beta-phase and its mechanisms in a fine-grained silicon-nitride-based ceramic. Journal of Materials Research, 2001, 16, 590-596.	1.2	7
239	Toughening Mechanisms in SiC-TiC Composites. Journal of the Ceramic Society of Japan, 2004, 112, 18-21.	1.3	7
240	Effect of annealing on mechanical properties of silicon carbide sintered with aluminum nitride and scandium oxide. Metals and Materials International, 2009, 15, 149-153.	1.8	7
241	Investigation of Curing Process on Melt Spun Polymethylsilsesquioxane Fiber as Precursor for Silicon Oxycarbide Fibers. Advanced Materials Research, 2009, 66, 1-4.	0.3	7
242	Effect of hot-forging on mechanical properties of silicon carbide sintered with Al2O3-Y2O3-MgO. Metals and Materials International, 2010, 16, 891-894.	1.8	7
243	Influence of powder characteristics on the electrical resistivity of SiC ceramics. Journal of the Ceramic Society of Japan, 2012, 120, 251-255.	0.5	7
244	Effect of initial α-phase content on microstructure and flexural strength of macroporous silicon carbide ceramics. Metals and Materials International, 2012, 18, 379-383.	1.8	7
245	Influence of temperature, impact angle and h-BN content on the erosive wear behavior of hot-pressed SiC-BN composites. Wear, 2020, 458-459, 203447.	1.5	7
246	Intrinsic microstructures of silicaâ€bonded porous nanoâ€SiC ceramics. Journal of the American Ceramic Society, 2021, 104, 706-710.	1.9	7
247	Pressureless solid-state sintering of SiC ceramics with BN and C additives. Journal of Asian Ceramic Societies, 2021, 9, 1165-1172.	1.0	7
248	Investigation on the Pore Properties of the Microcellular ZrO2Ceramics Using Hollow Microsphere. Journal of the Korean Ceramic Society, 2009, 46, 108-115.	1.1	7
249	High temperature strength and oxidation behaviour of Er2Si2O7-Si3N4 ceramics. Journal of Materials Science Letters, 1996, 15, 282-284.	0.5	6
250	Suppression of free Si formation during liquid phase sintering of polysiloxane-derived, porous silicon carbide ceramics. Journal of the Ceramic Society of Japan, 2010, 118, 102-106.	0.5	6
251	Effect of AlN addition on the electrical resistivity of pressureless sintered SiC ceramics with B ₄ C and C. Journal of the American Ceramic Society, 2021, 104, 6086-6091.	1.9	6
252	Effect of Aluminum Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2009, 46, 520-524.	1.1	6

#	Article	IF	CITATIONS
253	Effect of Starting SiC Particle Size on Nitridation and Strength of Silicon Nitride-Bonded Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2010, 47, 157-162.	1.1	6
254	Effect of Template Content on Microstructure and Flexural Strength of Porous Mullite-Bonded Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2010, 47, 509-514.	1.1	6
255	Fabrication and Properties of SiC Candle Filter by Vacuum Extrusion and Ramming Process (II). Journal of the Korean Ceramic Society, 2010, 47, 515-523.	1.1	6
256	Flexural Strength of Macroporous Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2011, 48, 360-367.	1.1	6
257	New quaternary additive for processing fully ceramic microencapsulated fuels without applied pressure. Journal of the European Ceramic Society, 2022, 42, 1238-1248.	2.8	6
258	Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics. Journal of the Korean Ceramic Society, 2022, 59, 589-594.	1.1	6
259	Electrical, thermal, and mechanical properties of porous silicon carbide ceramics with a boron carbide additive. International Journal of Applied Ceramic Technology, 2023, 20, 1114-1128.	1.1	6
260	Strengthening of silicon carbide by surface compressive layer. Journal of Materials Science, 1995, 30, 1005-1008.	1.7	5
261	Title is missing!. Journal of Materials Science Letters, 2000, 19, 2131-2133.	0.5	5
262	Epitaxial growth of cubic SiC thin films on silicon using single molecular precursors by metalorganic chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1887-1893.	0.9	5
263	Effect of large seeds addition on microstructural development of SiC sintered with oxynitride glass. Journal of Materials Science Letters, 2002, 21, 1015-1017.	0.5	5
264	Pressureless joining of SiC ceramics with magnesiaâ€aluminaâ€silica glass ceramics. International Journal of Applied Ceramic Technology, 2022, 19, 992-1000.	1.1	5
265	Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics. Journal of the Korean Ceramic Society, 2008, 45, 285-289.	1.1	5
266	Fabrication and Properties of the SiC Candle Filter by Vacuum Extrusion and Ramming Process. Journal of the Korean Ceramic Society, 2009, 46, 662-667.	1.1	5
267	Effect of Clay-Mineral Composition on Flexural Strength of Clay-based Membranes. Journal of the Korean Ceramic Society, 2014, 51, 380-385.	1.1	5
268	Processing and properties of water-absorbing zeolite-based porous ceramics. Journal of the Korean Ceramic Society, 2022, 59, 94-103.	1.1	5
269	Cutting performance of Si3N4 based SiC ceramic cutting tools. Journal of Mechanical Science and Technology, 2004, 18, 388-394.	0.4	4
270	Cutting performance of Al2O3-SiC nanocomposite tools. Journal of Materials Science, 2005, 40, 785-787.	1.7	4

#	Article	IF	CITATIONS
271	Indentation and contact damages on grain boundary controlled silicon carbide ceramics. Journal of Materials Science, 2009, 44, 1416-1420.	1.7	4
272	Micro electrical discharge drilling characteristics of conductive SiC–Ti2CN composite. Journal of Mechanical Science and Technology, 2018, 32, 3351-3358.	0.7	4
273	Electrical resistivity at the micron scale in a polycrystalline SiC ceramic. Ceramics International, 2021, 47, 27100-27106.	2.3	4
274	Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering. Journal of the Korean Ceramic Society, 2008, 45, 204-207.	1.1	4
275	Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores. Journal of the Korean Ceramic Society, 2012, 49, 347-351.	1.1	4
276	Effect of the C/Si Molar Ratio on the Characteristics of \hat{l}^2 -SiC Powders Synthesized from TEOS and Phenol Resin. Journal of the Korean Ceramic Society, 2013, 50, 31-36.	1.1	4
277	Flexural Strength of Polysiloxane-Derived Strontium-Doped SiOC Ceramics. Journal of the Korean Ceramic Society, 2015, 52, 61-65.	1.1	4
278	Synthesis of Microcellular Cordierite Ceramics Derived from a Preceramic Polymer. Journal of the Korean Ceramic Society, 2007, 44, 184-189.	1.1	4
279	Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics. Journal of the Korean Ceramic Society, 2008, 45, 537-543.	1.1	4
280	Investigation on the Properties of a Microcellular Light-Weighted Humidity Controlling Tile. Journal of the Korean Ceramic Society, 2011, 48, 404-411.	1.1	4
281	Effect of starting particle size and barium addition on flexural strength of polysiloxane-derived SiOC ceramics. Journal of the Ceramic Society of Japan, 2015, 123, 142-146.	0.5	3
282	SiC Ceramics, Structure, Processing and Properties. , 2021, , 150-164.		3
283	Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3Ceramics. Journal of the Korean Ceramic Society, 2010, 47, 529-533.	1.1	3
284	Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies. Journal of the Korean Ceramic Society, 2013, 50, 416-422.	1.1	3
285	Process-tolerant SiC-TiC composites. Journal of Materials Science Letters, 2002, 21, 863-866.	0.5	2
286	Processing and structural characteristics of encapsulated ZnO in porous polysiloxane-derived ceramics. Journal of the Ceramic Society of Japan, 2011, 119, 136-139.	0.5	2
287	Effect of additives on compressive strength and thermal conductivity of vermiculite-silica composites with layered structure. Journal of the Ceramic Society of Japan, 2012, 120, 150-154.	0.5	2
288	Highly Conductive <i>p</i> â€Type Zinc blende SiC Thin Films Fabricated on Silicon Substrates by Magnetron Sputtering. Journal of the American Ceramic Society, 2015, 98, 3663-3665.	1.9	2

#	Article	IF	CITATIONS
289	Slow crack growth behavior in Si3N4 sintered with Yb2Si2O7 tie-line composition additives. Journal of the European Ceramic Society, 2001, 21, 471-475.	2.8	1
290	Effect of Additive Composition on Fracture Toughness of In Situ-Toughened SiCâ^'Si ₃ N ₄ Composites. Journal of the Korean Ceramic Society, 2007, 44, 189-193.	1.1	1
291	Effect of the Processing Parameters on the Densification and Strength of 2D SiC Fiber-SiC Matrix Composites Fabricated by Slurry Infiltration and Stacking Process. Journal of the Korean Ceramic Society, 2007, 44, 349-353.	1.1	1
292	Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports. Journal of the Korean Ceramic Society, 2015, 52, 180-185.	1.1	1
293	Effect of Strontium Carbonate Content on Flexural Strength of Clay-Based Membrane Supports. Journal of the Korean Ceramic Society, 2015, 52, 467-472.	1.1	1
294	MicroStructural Hierarchy Descriptor (μSHD)–property correlations of silicon carbide ceramics. Journal of the European Ceramic Society, 2022, 42, 801-819.	2.8	1
295	Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure. Journal of the Korean Ceramic Society, 2013, 50, 226-230.	1.1	0
296	Preface to the <i>Festschrift</i> . International Journal of Applied Ceramic Technology, 2022, 19, 637-638.	1.1	0
297	Sub-surface microstructural investigation for establishing micro-mechanisms of wear in sliding of SiC and SiC-WC ceramics. Wear, 2022, 492-493, 204236.	1.5	0