Carl F Nathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101757/publications.pdf Version: 2024-02-01

CADI F ΝΑΤΗΛΝ

#	Article	IF	CITATIONS
1	Nitric oxide as a secretory product of mammalian cells. FASEB Journal, 1992, 6, 3051-3064.	0.5	4,161
2	NITRIC OXIDE AND MACROPHAGE FUNCTION. Annual Review of Immunology, 1997, 15, 323-350.	21.8	3,707
3	Nitric oxide synthases: Roles, tolls, and controls. Cell, 1994, 78, 915-918.	28.9	2,815
4	Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 2006, 6, 173-182.	22.7	2,394
5	Points of control in inflammation. Nature, 2002, 420, 846-852.	27.8	2,262
6	Nonresolving Inflammation. Cell, 2010, 140, 871-882.	28.9	1,717
7	Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology, 1991, 3, 65-70.	5.5	1,462
8	Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell, 1995, 81, 641-650.	28.9	1,424
9	Transcriptional Adaptation of <i>Mycobacterium tuberculosis</i> within Macrophages. Journal of Experimental Medicine, 2003, 198, 693-704.	8.5	1,311
10	Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8841-8848.	7.1	1,276
11	Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nature Reviews Immunology, 2013, 13, 349-361.	22.7	1,181
12	Deactivation of macrophages by transforming growth factor-Î ² . Nature, 1988, 334, 260-262.	27.8	862
13	The Macrophage as an Effector Cell. New England Journal of Medicine, 1980, 303, 622-626.	27.0	636
14	Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature, 2000, 407, 211-215.	27.8	629
15	Conversion of Proepithelin to Epithelins. Cell, 2002, 111, 867-878.	28.9	584
16	dSarm/Sarm1 Is Required for Activation of an Injury-Induced Axon Death Pathway. Science, 2012, 337, 481-484.	12.6	558
17	ALTERATIONS OF MACROPHAGE FUNCTIONS BY MEDIATORS FROM LYMPHOCYTES. Journal of Experimental Medicine, 1971, 133, 1356-1376.	8.5	512
18	Gramâ€negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction ¹ . FASEB Journal, 1991, 5, 2652-2660.	0.5	511

#	Article	IF	CITATIONS
19	The Proteasome of Mycobacterium tuberculosis Is Required for Resistance to Nitric Oxide. Science, 2003, 302, 1963-1966.	12.6	489
20	Phenotype of Mice and Macrophages Deficient in Both Phagocyte Oxidase and Inducible Nitric Oxide Synthase. Immunity, 1999, 10, 29-38.	14.3	472
21	Essential Role of Induced Nitric Oxide in the Initiation of the Inflammatory Response after Hemorrhagic Shock. Journal of Experimental Medicine, 1998, 187, 917-928.	8.5	457
22	The high-output nitric oxide pathway: role and regulation. Journal of Leukocyte Biology, 1994, 56, 576-582.	3.3	451
23	Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs ¹ . FASEB Journal, 1991, 5, 98-103.	0.5	449
24	Reprogramming of the Macrophage Transcriptome in Response to Interferon-Î ³ and Mycobacterium tuberculosis. Journal of Experimental Medicine, 2001, 194, 1123-1140.	8.5	437
25	Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. Journal of Experimental Medicine, 2010, 207, 117-128.	8.5	411
26	Modulation of Macrophage Function by Transforming Growth Factor β, Interleukinâ€4, and Interleukinâ€10a. Annals of the New York Academy of Sciences, 1993, 685, 713-739.	3.8	400
27	Macrophage Microbicidal Mechanisms In Vivo: Reactive Nitrogen versus Oxygen Intermediates in the Killing of Intracellular Visceral Leishmania donovani. Journal of Experimental Medicine, 1999, 189, 741-746.	8.5	393
28	Secretory Leukocyte Protease Inhibitor: A Macrophage Product Induced by and Antagonistic to Bacterial Lipopolysaccharide. Cell, 1997, 88, 417-426.	28.9	377
29	Antibiotic Resistance — Problems, Progress, and Prospects. New England Journal of Medicine, 2014, 371, 1761-1763.	27.0	377
30	Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. Journal of Clinical Investigation, 2003, 111, 769-778.	8.2	364
31	Antibiotics at the crossroads. Nature, 2004, 431, 899-902.	27.8	353
32	Local and Systemic Effects of Intradermal Recombinant Interferon-Î ³ in Patients with Lepromatous Leprosy. New England Journal of Medicine, 1986, 315, 6-15.	27.0	346
33	Metabolomics of Mycobacterium tuberculosis Reveals Compartmentalized Co-Catabolism of Carbon Substrates. Chemistry and Biology, 2010, 17, 1122-1131.	6.0	313
34	Peptide Methionine Sulfoxide Reductase: Structure, Mechanism of Action, and Biological Function. Archives of Biochemistry and Biophysics, 2002, 397, 172-178.	3.0	302
35	A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis. Nature Medicine, 2008, 14, 849-854.	30.7	300
36	Inducible nitric oxide synthaseâ€deficient mice have enhanced leukocyte–endothelium interactions in endotoxemia. FASEB Journal, 1997, 11, 955-964.	0.5	277

#	Article	IF	CITATIONS
37	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
38	CHARACTERIZATION OF A LYMPHOCYTE FACTOR WHICH ALTERS MACROPHAGE FUNCTIONS. Journal of Experimental Medicine, 1973, 137, 275-290.	8.5	233
39	Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nature Communications, 2014, 5, 4306.	12.8	228
40	Mechanism of suppression of nitric oxide synthase expression by interleukin-4 in primary mouse macrophages. Journal of Leukocyte Biology, 1994, 55, 227-233.	3.3	214
41	Inhibitors selective for mycobacterial versus human proteasomes. Nature, 2009, 461, 621-626.	27.8	213
42	Acid Resistance in <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2009, 191, 4714-4721.	2.2	209
43	Alkyl Hydroperoxide Reductase Subunit C (AhpC) Protects Bacterial and Human Cells against Reactive Nitrogen Intermediates. Molecular Cell, 1998, 1, 795-805.	9.7	204
44	Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: Identification of Â-ketoglutarate decarboxylase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10670-10675.	7.1	193
45	Protection from Alzheimer's-like disease in the mouse by genetic ablation of inducible nitric oxide synthase. Journal of Experimental Medicine, 2005, 202, 1163-1169.	8.5	187
46	Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nature Chemical Biology, 2008, 4, 609-616.	8.0	187
47	Rapid Interferon γ–dependent Clearance of Influenza A Virus and Protection from Consolidating Pneumonitis in Nitric Oxide Synthase 2–deficient Mice. Journal of Experimental Medicine, 1998, 188, 1541-1546.	8.5	185
48	SnapShot: Reactive Oxygen Intermediates (ROI). Cell, 2010, 140, 951-951.e2.	28.9	181
49	Selective Killing of Nonreplicating Mycobacteria. Cell Host and Microbe, 2008, 3, 137-145.	11.0	180
50	S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 467-472.	7.1	165
51	Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. Journal of Clinical Investigation, 2003, 111, 769-778.	8.2	157
52	Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends in Microbiology, 2011, 19, 307-314.	7.7	156
53	Acid-Susceptible Mutants of <i>Mycobacterium tuberculosis</i> Share Hypersusceptibility to Cell Wall and Oxidative Stress and to the Host Environment. Journal of Bacteriology, 2009, 191, 625-631.	2.2	155
54	A semi-automated micro-assay for H2O2 release by human blood monocytes and mouse peritoneal macrophages. Journal of Immunological Methods, 1985, 78, 323-336.	1.4	149

#	Article	IF	CITATIONS
55	Transcription and translation of inducible nitric oxide synthase in the pancreas of prediabetic BB rats. FEBS Letters, 1993, 328, 9-12.	2.8	140
56	Fresh Approaches to Anti-Infective Therapies. Science Translational Medicine, 2012, 4, 140sr2.	12.4	138
57	A glutamate-alanine-leucine (EAL) domain protein of Salmonella controls bacterial survival in mice, antioxidant defence and killing of macrophages: role of cyclic diGMP. Molecular Microbiology, 2005, 56, 1234-1245.	2.5	135
58	Mycobacterium tuberculosis and the host response. Journal of Experimental Medicine, 2005, 201, 1693-1697.	8.5	132
59	Structure of theMycobacterium tuberculosisproteasome and mechanism of inhibition by a peptidyl boronate. Molecular Microbiology, 2006, 59, 1417-1428.	2.5	120
60	Role of the tyrosine kinase pyk2 in the integrin-dependent activation of human neutrophils by TNF. Journal of Clinical Investigation, 1999, 104, 327-335.	8.2	120
61	Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Molecular Microbiology, 2004, 55, 561-571.	2.5	119
62	Virulence of Mycobacterium tuberculosis Depends on Lipoamide Dehydrogenase, a Member of Three Multienzyme Complexes. Cell Host and Microbe, 2011, 9, 21-31.	11.0	115
63	Epidemic Inflammation: Pondering Obesity. Molecular Medicine, 2008, 14, 485-492.	4.4	114
64	Role for Nucleotide Excision Repair in Virulence of Mycobacterium tuberculosis. Infection and Immunity, 2005, 73, 4581-4587.	2.2	112
65	Nitazoxanide Kills Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> and Evades Resistance. Journal of Medicinal Chemistry, 2009, 52, 5789-5792.	6.4	108
66	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2017, 5,	3.0	106
67	Activity-Based Metabolomic Profiling of Enzymatic Function: Identification of Rv1248c as a Mycobacterial 2-Hydroxy-3-oxoadipate Synthase. Chemistry and Biology, 2010, 17, 323-332.	6.0	104
68	Stressed Mycobacteria Use the Chaperone ClpB to Sequester Irreversibly Oxidized Proteins Asymmetrically Within and Between Cells. Cell Host and Microbe, 2015, 17, 178-190.	11.0	104
69	Resisting antimicrobial resistance. Nature Reviews Microbiology, 2020, 18, 259-260.	28.6	102
70	Nonsteroidal anti-inflammatory drug sensitizes <i>Mycobacterium tuberculosis</i> to endogenous and exogenous antimicrobials. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16004-16011.	7.1	101
71	Mycobacterium tuberculosis appears to lack α-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Molecular Microbiology, 2005, 57, 859-868.	2.5	99
72	Biology of antimicrobial resistance and approaches to combat it. Science Translational Medicine, 2020, 12, .	12.4	99

#	Article	IF	CITATIONS
73	Mycobacterium tuberculosis prcBAgenes encode a gated proteasome with broad oligopeptide specificity. Molecular Microbiology, 2006, 59, 1405-1416.	2.5	98
74	Nitazoxanide Disrupts Membrane Potential and Intrabacterial pH Homeostasis of <i>Mycobacterium tuberculosis</i> . ACS Medicinal Chemistry Letters, 2011, 2, 849-854.	2.8	93
75	Role of iNOS in Human Host Defense. Science, 2006, 312, 1874b-1875b.	12.6	91
76	In vitro differentiation of human macrophages with enhanced antimycobacterial activity. Journal of Clinical Investigation, 2011, 121, 3889-3901.	8.2	91
77	<i>N</i> -methylation of a bactericidal compound as a resistance mechanism in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4523-30.	7.1	88
78	Genetic regulation of vesiculogenesis and immunomodulation in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4790-7.	7.1	85
79	Elevation of IL-18 in human sepsis. Journal of Clinical Immunology, 2000, 20, 212-215.	3.8	78
80	Putting the brakes on innate immunity: a regulatory role for CD200?. Nature Immunology, 2001, 2, 17-19.	14.5	77
81	Oxygen and the inflammatory cell. Nature, 2003, 422, 675-676.	27.8	76
82	Nitrite produced by <i>Mycobacterium tuberculosis</i> in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4256-65.	7.1	76
83	ATP hydrolysis-coupled peptide translocation mechanism of <i>Mycobacterium tuberculosis</i> ClpB. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9560-E9569.	7.1	72
84	Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6863-E6870.	7.1	71
85	<i>Mycobacterium tuberculosis</i> expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Molecular Microbiology, 2009, 71, 583-593.	2.5	70
86	Synthetic Calanolides with Bactericidal Activity against Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2014, 57, 3755-3772.	6.4	69
87	Rifamycin action on RNA polymerase in antibiotic-tolerant <i>Mycobacterium tuberculosis</i> results in differentially detectable populations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4832-E4840.	7.1	69
88	Critical Role of the Carboxyl Terminus of Proline-rich Tyrosine Kinase (Pyk2) in the Activation of Human Neutrophils by Tumor Necrosis Factor. Journal of Experimental Medicine, 2003, 197, 63-75.	8.5	68
89	Structural Insights on the Mycobacterium tuberculosis Proteasomal ATPase Mpa. Structure, 2009, 17, 1377-1385.	3.3	65
90	Killing of non-replicating Mycobacterium tuberculosis by 8-hydroxyquinoline. Journal of Antimicrobial Chemotherapy, 2010, 65, 1424-1427.	3.0	65

#	Article	IF	CITATIONS
91	Secretory leukocyte protease inhibitor, an inhibitor of neutrophil activation, is elevated in serum in human sepsis and experimental endotoxemia. Critical Care Medicine, 2000, 28, 1276-1282.	0.9	62
92	Calcium-sensing soluble adenylyl cyclase mediates TNF signal transduction in human neutrophils. Journal of Experimental Medicine, 2005, 202, 353-361.	8.5	62
93	Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e68942.	2.5	60
94	Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome. Archives of Biochemistry and Biophysics, 2010, 501, 214-220.	3.0	57
95	Inducible Nitric Oxide Synthase in the Tuberculous Human Lung. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 130-131.	5.6	56
96	E1 of α-ketoglutarate dehydrogenase defends <i>Mycobacterium tuberculosis</i> against glutamate anaplerosis and nitroxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5834-43.	7.1	55
97	N,C-Capped Dipeptides with Selectivity for Mycobacterial Proteasome over Human Proteasomes: Role of S3 and S1 Binding Pockets. Journal of the American Chemical Society, 2013, 135, 9968-9971.	13.7	54
98	Brief treatment with a highly selective immunoproteasome inhibitor promotes long-term cardiac allograft acceptance in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8425-E8432.	7.1	54
99	A Multi-stress Model for High Throughput Screening Against Non-replicating Mycobacterium tuberculosis. Methods in Molecular Biology, 2015, 1285, 293-315.	0.9	54
100	Opposing reactions in coenzyme A metabolism sensitize <i>Mycobacterium tuberculosis</i> to enzyme inhibition. Science, 2019, 363, .	12.6	53
101	Type I interferon signaling mediates <i>Mycobacterium tuberculosis</i> –induced macrophage death. Journal of Experimental Medicine, 2021, 218, .	8.5	53
102	A philosophy of anti-infectives as a guide in the search for new drugs for tuberculosis. Tuberculosis, 2008, 88, S25-S33.	1.9	52
103	Distinct Specificities of Mycobacterium tuberculosis and Mammalian Proteasomes for N-Acetyl Tripeptide Substrates. Journal of Biological Chemistry, 2008, 283, 34423-34431.	3.4	51
104	Distinct Spatiotemporal Dynamics of Peptidoglycan Synthesis between <i>MycobacteriumAsmegmatis</i> and <i>MycobacteriumAtuberculosis</i> . MBio, 2017, 8, .	4.1	51
105	Novel Cephalosporins Selectively Active on Nonreplicating <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2016, 59, 6027-6044.	6.4	45
106	Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nature Communications, 2017, 8, 1692.	12.8	45
107	Benzimidazole-based compounds kill Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 2014, 75, 336-353.	5.5	43
108	<scp>TB</scp> drug development: immunology at the table. Immunological Reviews, 2015, 264, 308-318.	6.0	43

#	Article	IF	CITATIONS
109	Reconstitution of a <i>Mycobacterium tuberculosis</i> proteostasis network highlights essential cofactor interactions with chaperone DnaK. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7947-E7956.	7.1	43
110	Neutrophils and COVID-19: Nots, NETs, and knots. Journal of Experimental Medicine, 2020, 217, .	8.5	43
111	The profit problem in antibiotic R&D. Nature Reviews Drug Discovery, 2005, 4, 887-891.	46.4	42
112	Oxathiazolones Selectively Inhibit the Human Immunoproteasome over the Constitutive Proteasome. ACS Medicinal Chemistry Letters, 2014, 5, 405-410.	2.8	42
113	Identification of Novel Anti-mycobacterial Compounds by Screening a Pharmaceutical Small-Molecule Library against Nonreplicating <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2015, 1, 580-585.	3.8	41
114	Aligning pharmaceutical innovation with medical need. Nature Medicine, 2007, 13, 304-308.	30.7	40
115	Taming Tuberculosis: A Challenge for Science and Society. Cell Host and Microbe, 2009, 5, 220-224.	11.0	40
116	Behavioral deficits and progressive neuropathology in progranulinâ€deficient mice: a mouse model of frontotemporal dementia. FASEB Journal, 2010, 24, 4639-4647.	0.5	39
117	Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 6521-6538.	3.2	36
118	Improved Control of Tuberculosis and Activation of Macrophages in Mice Lacking Protein Kinase R. PLoS ONE, 2012, 7, e30512.	2.5	35
119	Nonresolving inflammation redux. Immunity, 2022, 55, 592-605.	14.3	35
120	Identification of a Chemical That Inhibits the Mycobacterial UvrABC Complex in Nucleotide Excision Repair. Biochemistry, 2011, 50, 1329-1335.	2.5	33
121	The Moving Frontier in Nitric Oxide-Dependent Signaling. Science Signaling, 2004, 2004, pe52-pe52.	3.6	32
122	Efficacy of Nitazoxanide against Clinical Isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 2834-2837.	3.2	32
123	The Tuberculosis Drug Accelerator at year 10: what have we learned?. Nature Medicine, 2021, 27, 1333-1337.	30.7	32
124	Crystal Structure and Functional Analysis of Lipoamide Dehydrogenase from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2005, 280, 33977-33983.	3.4	30
125	IMMUNOLOGY: Catalytic Antibody Bridges Innate and Adaptive Immunity. Science, 2002, 298, 2143-2144.	12.6	28
126	Cooperative development of antimicrobials: looking back to look ahead. Nature Reviews Microbiology, 2015, 13, 651-657.	28.6	28

#	Article	IF	CITATIONS
127	Mobilizable intracellular pool of p55 (type I) tumor necrosis factor receptors in human neutrophils. Journal of Leukocyte Biology, 1992, 52, 122-124.	3.3	27
128	Identification of Compounds with pH-Dependent Bactericidal Activity against <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2019, 5, 272-280.	3.8	27
129	Immunoproteasome β5iâ€Selective Dipeptidomimetic Inhibitors. ChemMedChem, 2016, 11, 2127-2131.	3.2	26
130	Differentially Detectable Mycobacterium tuberculosis Cells in Sputum from Treatment-Naive Subjects in Haiti and Their Proportionate Increase after Initiation of Treatment. MBio, 2018, 9, .	4.1	25
131	Multiform antimicrobial resistance from a metabolic mutation. Science Advances, 2021, 7, .	10.3	25
132	Triazaspirodimethoxybenzoyls as Selective Inhibitors of Mycobacterial Lipoamide Dehydrogenase,. Biochemistry, 2010, 49, 1616-1627.	2.5	23
133	Nitrite impacts the survival of <i>Mycobacterium tuberculosis</i> in response to isoniazid and hydrogen peroxide. MicrobiologyOpen, 2013, 2, 901-911.	3.0	22
134	Influence of Allosteric Regulators on Individual Steps in the Reaction Catalyzed by Mycobacterium tuberculosis 2-Hydroxy-3-oxoadipate Synthase. Journal of Biological Chemistry, 2013, 288, 21688-21702.	3.4	22
135	New Approaches to Filling the Gap in Tuberculosis Drug Discovery. PLoS Medicine, 2007, 4, e293.	8.4	21
136	Genome-Wide Screen for Mycobacterium tuberculosis Genes That Regulate Host Immunity. PLoS ONE, 2010, 5, e15120.	2.5	21
137	New Evidence for the Complexity of the Population Structure of <i>Mycobacterium tuberculosis</i> Increases the Diagnostic and Biologic Challenges. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1448-1451.	5.6	21
138	Secretory products of macrophages: twenty-five years on. Journal of Clinical Investigation, 2012, 122, 1189-1190.	8.2	20
139	Development of a Highly Selective <i>Plasmodium falciparum</i> Proteasome Inhibitor with Antiâ€malaria Activity in Humanized Mice. Angewandte Chemie - International Edition, 2021, 60, 9279-9283.	13.8	20
140	Rational Design of Selective and Bioactive Inhibitors of the Mycobacterium tuberculosis Proteasome. ACS Infectious Diseases, 2017, 3, 176-181.	3.8	19
141	Identification of a Mycothiol-Dependent Nitroreductase from <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 771-787.	3.8	19
142	Early Bactericidal Activity Trial of Nitazoxanide for Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	19
143	Identification of new inhibitors of protein kinase R guided by statistical modeling. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 4108-4114.	2.2	18
144	Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Molecular Medicine, 2002, 8, 95-102.	4.4	18

#	Article	IF	CITATIONS
145	Ceramide selectively inhibits early events in the response of human neutrophils to tumor necrosis factor. Journal of Leukocyte Biology, 1996, 59, 451-460.	3.3	17
146	Cytosolic Phospholipase A2 Enzymes Are Not Required by Mouse Bone Marrow-Derived Macrophages for the Control of Mycobacterium tuberculosis In Vitro. Infection and Immunity, 2006, 74, 1751-1756.	2.2	17
147	An Antibiotic Mimics Immunity. Science, 2008, 322, 1337-1338.	12.6	17
148	Making Space for Anti-Infective Drug Discovery. Cell Host and Microbe, 2011, 9, 343-348.	11.0	17
149	Is iNOS Beginning to Smoke?. Cell, 2011, 147, 257-258.	28.9	16
150	Lipoamide Channel-Binding Sulfonamides Selectively Inhibit Mycobacterial Lipoamide Dehydrogenase. Biochemistry, 2013, 52, 9375-9384.	2.5	15
151	Macrophages' Choice: Take It In or Keep It Out. Immunity, 2016, 45, 710-711.	14.3	15
152	Oxidative damage and delayed replication allow viable <i>Mycobacterium tuberculosis</i> to go undetected. Science Translational Medicine, 2021, 13, eabg2612.	12.4	15
153	Structural Basis for the Species-Selective Binding of N,C-Capped Dipeptides to the <i>Mycobacterium tuberculosis</i>	2.5	14
154	Selective Phenylimidazole-Based Inhibitors of the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2019, 62, 9246-9253.	6.4	14
155	Nonredundant functions of <i>Mycobacterium tuberculosis</i> chaperones promote survival under stress. Molecular Microbiology, 2021, 115, 272-289.	2.5	14
156	Identification of Rv3852 as an Agrimophol-Binding Protein in Mycobacterium tuberculosis. PLoS ONE, 2015, 10, e0126211.	2.5	13
157	Identification of β-Lactams Active against <i>Mycobacterium tuberculosis</i> by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infectious Diseases, 2022, 8, 557-573.	3.8	13
158	Characterization of Differentially Detectable Mycobacterium tuberculosis in the Sputum of Subjects with Drug-Sensitive or Drug-Resistant Tuberculosis before and after Two Months of Therapy. Antimicrobial Agents and Chemotherapy, 2021, 65, e0060821.	3.2	12
159	Dual-Pharmacophore Pyrithione-Containing Cephalosporins Kill Both Replicating and Nonreplicating <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2019, 5, 1433-1445.	3.8	11
160	Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Frontiers in Microbiology, 2020, 11, 1248.	3.5	11
161	Evidence for dispensability of protein kinase R in host control of tuberculosis. European Journal of Immunology, 2018, 48, 612-620.	2.9	10
162	Bactericidal Disruption of Magnesium Metallostasis in Mycobacterium tuberculosis Is Counteracted by Mutations in the Metal Ion Transporter CorA. MBio, 2019, 10, .	4.1	10

#	Article	IF	CITATIONS
163	Derivatives of Natural Product Agrimophol as Disruptors of Intrabacterial pH Homeostasis in <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2019, 5, 1087-1104.	3.8	10
164	Structure–Activity Relationships of Noncovalent Immunoproteasome β5i-Selective Dipeptides. Journal of Medicinal Chemistry, 2020, 63, 13103-13123.	6.4	10
165	Rethinking immunology. Science, 2021, 373, 276-277.	12.6	10
166	In Vitro and In Vivo Inhibition of the <i>Mycobacterium tuberculosis</i> Phosphopantetheinyl Transferase PptT by Amidinoureas. Journal of Medicinal Chemistry, 2022, 65, 1996-2022.	6.4	10
167	Kunkel Lecture: Fundamental immunodeficiency and its correction. Journal of Experimental Medicine, 2017, 214, 2175-2191.	8.5	9
168	Noncytotoxic Inhibition of the Immunoproteasome Regulates Human Immune Cells In Vitro and Suppresses Cutaneous Inflammation in the Mouse. Journal of Immunology, 2021, 206, 1631-1641.	0.8	9
169	Macrocyclic Peptides that Selectively Inhibit the <i>Mycobacterium tuberculosis</i> Proteasome. Journal of Medicinal Chemistry, 2021, 64, 6262-6272.	6.4	9
170	Chemical inhibitors of TNF signal transduction in human neutrophils point to distinct steps in cell activation. Journal of Leukocyte Biology, 2006, 79, 147-154.	3.3	8
171	Drug-resistant tuberculosis: a new shot on goal. Nature Medicine, 2014, 20, 121-123.	30.7	8
172	Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria. Journal of Visualized Experiments, 2016, , .	0.3	8
173	Potentiation of rifampin activity in a mouse model of tuberculosis by activation of host transcription factor EB. PLoS Pathogens, 2020, 16, e1008567.	4.7	8
174	Design, Synthesis, and Optimization of Macrocyclic Peptides as Species-Selective Antimalaria Proteasome Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 9350-9375.	6.4	8
175	Mycobacterium tuberculosis gene Rv2136c is dispensable for acid resistance and virulence in mice. Tuberculosis, 2011, 91, 343-347.	1.9	7
176	Comparison of transposon and deletion mutants in Mycobacterium tuberculosis : The case of rv1248c , encoding 2-hydroxy-3-oxoadipate synthase. Tuberculosis, 2015, 95, 689-694.	1.9	7
177	From transient infection to chronic disease. Science, 2015, 350, 161-161.	12.6	7
178	What can immunology contribute to the control of the world's leading cause of death from bacterial infection?. Immunological Reviews, 2015, 264, 2-5.	6.0	6
179	Targeting Phenotypically Tolerant <i>Mycobacterium tuberculosis</i> ., 0, , 317-360.		6
180	Structural insights into phosphopantetheinyl hydrolase PptH from Mycobacterium tuberculosis. Protein Science, 2020, 29, 744-757.	7.6	6

#	Article	IF	CITATIONS
181	A Multistress Model for High Throughput Screening Against Nonreplicating Mycobacterium tuberculosis. Methods in Molecular Biology, 2021, 2314, 611-635.	0.9	5
182	Human studies at JEM: Immunology and beyond. Journal of Experimental Medicine, 2016, 213, 467-468.	8.5	3
183	A time of change. Journal of Experimental Medicine, 2017, 214, 1-2.	8.5	2
184	Tres Cantos Open Lab: celebrating a decade of innovation in collaboration to combat endemic infectious diseases. Nature Reviews Drug Discovery, 2021, 20, 799-800.	46.4	2
185	Immigration in science. Journal of Experimental Medicine, 2020, 217, .	8.5	2
186	A Journey in Science: Promise, Purpose, Privilege. Molecular Medicine, 2013, 19, 305-313.	4.4	1
187	JEM Advisory Editorial Board: Increasing diversity. Journal of Experimental Medicine, 2017, 214, 2169-2169.	8.5	1
188	Whole Cell Active Inhibitors of Mycobacterial Lipoamide Dehydrogenase Afford Selectivity over the Human Enzyme through Tight Binding Interactions. ACS Infectious Diseases, 2021, 7, 435-444.	3.8	1
189	Surmounting structural barriers to tackle endemic infectious diseases. Journal of Experimental Medicine, 2021, 218, .	8.5	1
190	Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiology Spectrum, 2021, 9, e0092821.	3.0	1
191	Bacterial Proteasome. , 2013, , 3671-3677.		0
192	The new face of JEM. Journal of Experimental Medicine, 2017, 214, 3467-3467.	8.5	0
193	Phenotypic Tolerance and Bacterial Persistence. , 2018, , 409-429.		0
194	JEM Editorial Board: Expanding on the basis of cancer. Journal of Experimental Medicine, 2019, 216, 1725-1725.	8.5	0
195	Effect of C-2 substitution on the stability of non-traditional cephalosporins in mouse plasma. Journal of Antibiotics, 2019, 72, 469-475.	2.0	0
196	We are here for you and ready to hear from you. Journal of Experimental Medicine, 2020, 217, .	8.5	0
197	JEM goes viral. Journal of Experimental Medicine, 2020, 217, .	8.5	0
198	Immigration in science. Journal of Experimental Medicine, 2020, 217, .	8.5	0