
## Mehdi Damaghi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101630/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion.<br>Digestive Diseases and Sciences, 2021, 66, 381-397.                              | 1.1 | 16        |
| 2  | Turnover Modulates the Need for a Cost of Resistance in Adaptive Therapy. Cancer Research, 2021, 81, 1135-1147.                                                               | 0.4 | 71        |
| 3  | The harsh microenvironment in early breast cancer selects for a Warburg phenotype. Proceedings of the United States of America, 2021, 118, .                                  | 3.3 | 78        |
| 4  | Cycling hypoxia selects for constitutive HIF stabilization. Scientific Reports, 2021, 11, 5777.                                                                               | 1.6 | 16        |
| 5  | Frequency-dependent interactions determine outcome of competition between two breast cancer cell lines. Scientific Reports, 2021, 11, 4908.                                   | 1.6 | 21        |
| 6  | Extracellular Acidification Induces Lysosomal Dysregulation. Cells, 2021, 10, 1188.                                                                                           | 1.8 | 9         |
| 7  | Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models.<br>Journal of Personalized Medicine, 2021, 11, 496.                           | 1.1 | 11        |
| 8  | Predicting the results of competition between two breast cancer lines grown in 3-D spheroid culture.<br>Mathematical Biosciences, 2021, 336, 108575.                          | 0.9 | 0         |
| 9  | Targeting of Evolutionarily Acquired Cancer Cell Phenotype by Exploiting pHi-Metabolic<br>Vulnerabilities. Cancers, 2021, 13, 64.                                             | 1.7 | 8         |
| 10 | Collagen production and niche engineering: A novel strategy for cancer cells to survive acidosis in DCIS and evolve. Evolutionary Applications, 2020, 13, 2689-2703.          | 1.5 | 11        |
| 11 | T-cells produce acidic niches in lymph nodes to suppress their own effector functions. Nature Communications, 2020, 11, 4113.                                                 | 5.8 | 77        |
| 12 | Omics Integration Analyses Reveal the Early Evolution of Malignancy in Breast Cancer. Cancers, 2020, 12, 1460.                                                                | 1.7 | 1         |
| 13 | Integrative Analysis of Breast Cancer Cells Reveals an Epithelial-Mesenchymal Transition Role in Adaptation to Acidic Microenvironment. Frontiers in Oncology, 2020, 10, 304. | 1.3 | 28        |
| 14 | Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor<br>Evolution. Frontiers in Oncology, 2020, 10, 373.                            | 1.3 | 5         |
| 15 | Mix and Match: Phenotypic Coexistence as a Key Facilitator of Cancer Invasion. Bulletin of Mathematical Biology, 2020, 82, 15.                                                | 0.9 | 13        |
| 16 | Causes, consequences, and therapy of tumors acidosis. Cancer and Metastasis Reviews, 2019, 38, 205-222.                                                                       | 2.7 | 200       |
| 17 | Acidity suppresses T cell function and increases memory T cell development. FASEB Journal, 2019, 33, lb596.                                                                   | 0.2 | 1         |
| 18 | Abstract 1140: A new twist on an old strategy: Can the lymph node environment help cancers escape                                                                             |     | 0         |

immune surveillance., 2019, , .

Mehdi Damaghi

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications, 2018, 9, 2997.                                                                             | 5.8 | 277       |
| 20 | Abstract 171: Acid-induced collagen remodeling promotes cancer progress as a result of niche engineering. , 2018, , .                                                                      |     | 0         |
| 21 | Defining Cancer Subpopulations by Adaptive Strategies Rather Than Molecular Properties Provides<br>Novel Insights into Intratumoral Evolution. Cancer Research, 2017, 77, 2242-2254.       | 0.4 | 110       |
| 22 | Phenotypic changes of acid-adapted cancer cells push them toward aggressiveness in their evolution in the tumor microenvironment. Cell Cycle, 2017, 16, 1739-1743.                         | 1.3 | 51        |
| 23 | Abstract 3538: Enhanced dependence on lipid metabolism is a cellular adaptation to acidic microenvironment. Cancer Research, 2017, 77, 3538-3538.                                          | 0.4 | 2         |
| 24 | Abstract B51: Tumor cell evolutionary strategies to overcome immune response. , 2017, , .                                                                                                  |     | 0         |
| 25 | Lysosomal protein relocation as an adaptation mechanism to extracellular acidosis. Cell Cycle, 2016, 15, 1659-1660.                                                                        | 1.3 | 12        |
| 26 | Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy. Cancer Research, 2016, 76, 1381-1390.                                                                       | 0.4 | 451       |
| 27 | Abstract 5094: Acid-induced collagen remodeling promotes cancer progress as a result of niche engineering competition between cancer and stroma cells. , 2016, , .                         |     | 0         |
| 28 | Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nature Communications, 2015, 6, 8752.                                          | 5.8 | 151       |
| 29 | Abstract 1265: LAMP2 overexpression in the plasma membrane of breast cancer cells in response of chronic acidosis as a new imaging and therapeutic target. , 2015, , .                     |     | 0         |
| 30 | pH sensing and regulation in cancer. Frontiers in Physiology, 2013, 4, 370.                                                                                                                | 1.3 | 443       |
| 31 | One β Hairpin Follows the Other: Exploring Refolding Pathways and Kinetics of the Transmembrane<br>βâ€Barrel Protein OmpG. Angewandte Chemie - International Edition, 2011, 50, 7422-7424. | 7.2 | 32        |
| 32 | Dual energy landscape: The functional state of the βâ€barrel outer membrane protein G molds its<br>unfolding energy landscape. Proteomics, 2010, 10, 4151-4162.                            | 1.3 | 16        |
| 33 | pH-Dependent Interactions Guide the Folding and Gate the Transmembrane Pore of the β-Barrel<br>Membrane Protein OmpG. Journal of Molecular Biology, 2010, 397, 878-882.                    | 2.0 | 37        |
| 34 | One βâ€Hairpin after the Other: Exploring Mechanical Unfolding Pathways of the Transmembrane βâ€Barrel<br>Protein OmpG. Angewandte Chemie - International Edition, 2009, 48, 8306-8308.    | 7.2 | 38        |
| 35 | Dendrosomes as novel gene porters-III. Journal of Chemical Technology and Biotechnology, 2008, 83, 912-920.                                                                                | 1.6 | 30        |