Martin T White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101429/publications.pdf

Version: 2024-02-01

759190 677123 26 613 12 22 h-index citations g-index papers 26 26 26 420 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Review of supercritical CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e6790" altimg="si34.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:math> technologies and systems for power generation. Applied Thermal Engineering, 2021, 185, 116447.	6.0	206
2	Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery. Energy, 2018, 161, 1181-1198.	8.8	83
3	Industrial waste-heat recovery through integrated computer-aided working-fluid and ORC system optimisation using SAFT- <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>î³</mml:mi></mml:mrow></mml:math> Mie. Energy Conversion and Management. 2017. 150. 851-869.	9.2	76
4	A new method to identify the optimal temperature of latent-heat thermal-energy storage systems for power generation from waste heat. International Journal of Heat and Mass Transfer, 2020, 149, 119111.	4.8	25
5	Cycle and turbine optimisation for an ORC operating with two-phase expansion. Applied Thermal Engineering, 2021, 192, 116852.	6.0	22
6	A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles. Energies, $2018,11,800.$	3.1	20
7	Experimental Investigation of the Operating Point of a 1-kW ORC System. Energy Procedia, 2017, 129, 875-882.	1.8	18
8	Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection. Applied Energy, 2016, 183, 1227-1239.	10.1	16
9	Simultaneous Cycle Optimization and Fluid Selection for ORC Systems Accounting for the Effect of the Operating Conditions on Turbine Efficiency. Frontiers in Energy Research, 2019, 7, .	2.3	16
10	The Application of Similitude Theory for the Performance Prediction of Radial Turbines Within Small-Scale Low-Temperature Organic Rankine Cycles. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	15
11	Mean-Line Design of a Supercritical CO2 Micro Axial Turbine. Applied Sciences (Switzerland), 2020, 10, 5069.	2.5	15
12	Making the case for cascaded organic Rankine cycles for waste-heat recovery. Energy, 2020, 211, 118912.	8.8	14
13	Sensitivity of transcritical cycle and turbine design to dopant fraction in CO2-based working fluids. Applied Thermal Engineering, 2021, 190, 116796.	6.0	14
14	Integrated computer-aided working-fluid design and thermoeconomic ORC system optimisation. Energy Procedia, 2017, 129, 152-159.	1.8	12
15	A comparison of axial turbine loss models for air, sCO <mml:math altimg="si141.svg" display="inline" id="d1e3771" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow><td>7.8</td><td>12</td></mml:msub></mml:math>	7.8	12
16	Investigating the wet-to-dry expansion of organic fluids for power generation. International Journal of Heat and Mass Transfer, 2022, 192, 122921.	4.8	11
17	System and component modelling and optimisation for an efficient 10 kWe low-temperature organic Rankine cycle utilising a radial inflow expander. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2015, 229, 795-809.	1.4	9
18	The One-Dimensional Meanline Design of Radial Turbines for Small Scale Low Temperature Organic Rankine Cycles. , $2015, $, .		8

#	Article	IF	CITATIONS
19	Supersonic flow of non-ideal fluids in nozzles: An application of similitude theory and lessons for ORC turbine design and flexible use considering system performance. Journal of Physics: Conference Series, 2017, 821, 012002.	0.4	7
20	Working-Fluid Replacement in Supersonic Organic Rankine Cycle Turbines. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	1.1	5
21	Rotor-Dynamics of Different Shaft Configurations for a 6 kW Micro Gas Turbine for Concentrated Solar Power. , 2016, , .		3
22	Design of a Closed-Loop Optical-Access Supersonic Test Facility for Organic Vapours. , 2018, , .		2
23	The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles. IOP Conference Series: Materials Science and Engineering, 2015, 90, 012063.	0.6	1
24	Investigating the Effect of Changing the Working Fluid on the Three-Dimensional Flow Within Organic Rankine Cycle Turbines. , 2016 , , .		1
25	Comparison between single and cascaded organic Rankine cycle systems accounting for the effects of expansion volume ratio on expander performance. IOP Conference Series: Materials Science and Engineering, 2019, 604, 012086.	0.6	1
26	Developments in Solar Powered Micro Gas Turbines and Waste Heat Recovery Organic Rankine Cycles. Lecture Notes in Networks and Systems, 2020, , 439-452.	0.7	1