Li Ou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6101142/publications.pdf

Version: 2024-02-01

677142 759233 22 517 12 22 citations h-index g-index papers 590 27 27 27 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Dose-Dependent Prevention of Metabolic and Neurologic Disease in Murine MPS II by ZFN-Mediated InÂVivo Genome Editing. Molecular Therapy, 2018, 26, 1127-1136.	8.2	103
2	ZFN-Mediated InÂVivo Genome Editing Corrects Murine Hurler Syndrome. Molecular Therapy, 2019, 27, 178-187.	8.2	63
3	High-dose enzyme replacement therapy in murine Hurler syndrome. Molecular Genetics and Metabolism, 2014, 111, 116-122.	1.1	46
4	A Highly Efficacious PS Gene Editing System Corrects Metabolic and Neurological Complications of Mucopolysaccharidosis Type I. Molecular Therapy, 2020, 28, 1442-1454.	8.2	43
5	A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases. Gene Therapy, 2020, 27, 226-236.	4.5	39
6	Rare disease awareness and perspectives of physicians in China: a questionnaire-based study. Orphanet Journal of Rare Diseases, 2021, 16, 171.	2.7	28
7	Phenotype prediction for mucopolysaccharidosis type I by in silico analysis. Orphanet Journal of Rare Diseases, 2017, 12, 125.	2.7	25
8	RTB lectin-mediated delivery of lysosomal \hat{l}_{\pm} - l -iduronidase mitigates disease manifestations systemically including the central nervous system. Molecular Genetics and Metabolism, 2018, 123, 105-111.	1.1	21
9	Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Molecular Genetics and Metabolism, 2019, 126, 139-150.	1.1	20
10	Metabolomics profiling reveals profound metabolic impairments in mice and patients with Sandhoff disease. Molecular Genetics and Metabolism, 2019, 126, 151-156.	1.1	15
11	Elements of lentiviral vector design toward gene therapy for treating mucopolysaccharidosis I. Molecular Genetics and Metabolism Reports, 2016, 8, 87-93.	1.1	14
12	A questionnaire-based study to comprehensively assess the status quo of rare disease patients and care-givers in China. Orphanet Journal of Rare Diseases, 2021, 16, 327.	2.7	14
13	Standardization of α-L-iduronidase enzyme assay with Michaelis–Menten kinetics. Molecular Genetics and Metabolism, 2014, 111, 113-115.	1.1	13
14	The urgent need to empower rare disease organizations in China: an interview-based study. Orphanet Journal of Rare Diseases, 2020, 15, 282.	2.7	13
15	Proteomic analysis of mucopolysaccharidosis I mouse brain with two-dimensional polyacrylamide gel electrophoresis. Molecular Genetics and Metabolism, 2017, 120, 101-110.	1.1	12
16	Coping Strategies, Stress, and Support Needs in Caregivers of Children with Mucopolysaccharidosis. JIMD Reports, 2018, 42, 89-97.	1.5	12
17	Genotype-phenotype correlation of gangliosidosis mutations using in silico tools and homology modeling. Molecular Genetics and Metabolism Reports, 2019, 20, 100495.	1.1	11
18	SAAMP 2.0: An algorithm to predict genotypeâ€phenotype correlation of lysosomal storage diseases. Clinical Genetics, 2018, 93, 1008-1014.	2.0	9

#	Article	IF	CITATION
19	Examination of a blood-brain barrier targeting \hat{l}^2 -galactosidase-monoclonal antibody fusion protein in a murine model of GM1-gangliosidosis. Molecular Genetics and Metabolism Reports, 2021, 27, 100748.	1.1	9
20	A longitudinal study of neurocognition and behavior in patients with Hurler-Scheie syndrome heterozygous for the L238Q mutation. Molecular Genetics and Metabolism Reports, 2019, 20, 100484.	1.1	3
21	484. In Vivo Zinc-Finger Nuclease Mediated Iduronate-2-Sulfatase (IDS) Target Gene Insertion and Correction of Metabolic Disease in a Mouse Model of Mucopolysaccharidosis Type II (MPS II). Molecular Therapy, 2016, 24, S192.	8.2	2
22	485. ZFN-Mediated Liver-Targeting Gene Therapy Corrects Systemic and Neurological Disease of Mucopolysaccharidosis Type I. Molecular Therapy, 2016, 24, S192-S193.	8.2	1