Xiaoming Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6100911/publications.pdf

Version: 2024-02-01

443 papers 22,209 citations

9428 76 h-index 25230 113 g-index

466 all docs

466 docs citations

466 times ranked 9413 citing authors

#	Article	IF	CITATIONS
1	Regio- and enantioselective conjugate addition of \hat{l}^2 -nitro $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyls to construct 3-alkenyl disubstituted oxindoles. Chinese Chemical Letters, 2023, 34, 107487.	4.8	11
2	Effect of the Biomimetic Spine-Covered Protrusions (BSCPs) Height and Arrangement on SUBOFF Bare Hull Model Drag. Arabian Journal for Science and Engineering, 2023, 48, 2873-2888.	1.7	1
3	Organocatalytic Stereoselective [8+2] Cycloaddition of Tropones with Azlactones. CCS Chemistry, 2022, 4, 650-659.	4.6	16
4	Synthesis of Dihydroisoquinoline and Dihydropyridine Derivatives via Asymmetric Dearomative Three-Component Reaction. CCS Chemistry, 2022, 4, 2000-2008.	4.6	31
5	Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges. Advanced Engineering Materials, 2022, 24, 2100696.	1.6	34
6	Asymmetric catalytic nitrooxylation and azidation of \hat{I}^2 -keto amides/esters with hypervalent iodine reagents. Organic Chemistry Frontiers, 2022, 9, 703-708.	2.3	10
7	Synthesis of chiral pyridine-oxazolines <i>via</i> a catalytic asymmetric Heine reaction of <i>meso-N</i> -(2-picolinoyl)-aziridines. Organic Chemistry Frontiers, 2022, 9, 1531-1535.	2.3	4
8	Diastereodivergent Synthesis of Chiral α-Aminoketones via a Catalytic O–H Insertion/Barnes–Claisen Rearrangement Reaction. ACS Catalysis, 2022, 12, 1784-1790.	5.5	14
9	Asymmetric Catalytic Rearrangements with α-Diazocarbonyl Compounds. Accounts of Chemical Research, 2022, 55, 415-428.	7.6	116
10	Asymmetric synthesis of isochromanone derivatives <i>via</i> trapping carboxylic oxonium ylides and aldol cascade. Chemical Science, 2022, 13, 1163-1168.	3.7	5
11	Rheological Properties and Drag Reduction Performance of Puffer Epidermal Mucus. ACS Biomaterials Science and Engineering, 2022, 8, 460-469.	2.6	10
12	Enantioselective formal $[2 + 2 + 2]$ cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives. Chemical Communications, 2022, 58, 1001-1004.	2.2	6
13	Numerical-Experimental StudyÂonÂtheÂInfluenceÂofÂtheÂBiomimeticÂSpine-CoveredÂProtrusionsÂ(BSCPs)ÂStructureÂonÂthe Base Pres and Near-WakeÂFlowÂofÂUnderwaterÂVehicles. Arabian Journal for Science and Engineering, 2022, 47, 6821-6835.	sure 1.7	1
14	Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic Câ^'H Alkylation via a Transient Chiral Nucleophile Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
15	Enantioselective Synthesis of Azetidines through [3 + 1]-Cycloaddition of Donor–Acceptor Aziridines with Isocyanides. Organic Letters, 2022, 24, 1513-1517.	2.4	14
16	Recent advances in bioinspired superhydrophobic ice-proof surfaces: challenges and prospects. Nanoscale, 2022, 14, 5960-5993.	2.8	23
17	Enantioselective [1,2]-Stevens rearrangement of thiosulfonates to construct dithio-substituted quaternary carbon centers. Chemical Science, 2022, 13, 4103-4108.	3.7	13
18	Catalytic asymmetric transformation of nitrones and allenes to dihydropyridoindoles ⟨i⟩via⟨ i⟩ chiral ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′-dioxide cobalt(⟨scp⟩ii⟨ scp⟩) catalysis. Chemical Communications, 2022, 58, 5482-5485.	2.2	6

#	Article	IF	Citations
19	Catalytic asymmetric synthesis of chiral azo compounds via interrupted Japp-Klingemann reaction with aryldiazonium salts. Science China Chemistry, 2022, 65, 546-553.	4.2	16
20	Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic <i>N</i> -sulfonyl ketimines with ketones. Chemical Science, 2022, 13, 4313-4320.	3.7	6
21	Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
22	Catalytic asymmetric amination of azlactones with azobenzenes. Chemical Communications, 2022, 58, 5881-5884.	2.2	3
23	Enantioselective construction of <i>cis</i> hydroindole scaffolds <i>via</i> an asymmetric inverse-electron-demand Diels–Alder reaction: application to the formal total synthesis of (+)-minovincine. Chemical Science, 2022, 13, 5562-5567.	3.7	17
24	Visible-Light-Activated Asymmetric Addition of Hydrocarbons to Pyridine-Based Ketones. ACS Catalysis, 2022, 12, 5136-5144.	5.5	21
25	Photoinduced Chemoâ€, Site―and Stereoselective α (sp ³)â~'H Functionalization of Sulfides. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
26	Asymmetric Catalytic <scp>αâ€Selective</scp> Allylation of Ketones with Allyltrifluoroborates Using <scp>Dualâ€Functional</scp> Chiral <scp>In^{III}</scp> / <i>N</i> , <i>N</i> ′â€Dioxide Complex. Chinese Journal of Chemistry, 2022, 40, 1793-1798.	2.6	11
27	Frontispiece: Asymmetric Catalytic (2+1) Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
28	Frontispiz: Asymmetric Catalytic $(2+1)$ Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie, 2022, 134, .	1.6	0
29	Stereodivergent total synthesis of rocaglaol initiated by synergistic dual-metal-catalyzed asymmetric allylation of benzofuran-3(2H)-one. CheM, 2022, 8, 2011-2022.	5.8	55
30	Catalytic Regio―and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angewandte Chemie - International Edition, 2022, 61, e202203650.	7.2	17
31	Catalytic Regio―and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water. Angewandte Chemie, 2022, 134, .	1.6	4
32	RÃ⅓cktitelbild: Catalytic Regio―and Enantioselective Protonation for the Synthesis of Chiral Allenes: Synergistic Effect of the Counterion and Water (Angew. Chem. 27/2022). Angewandte Chemie, 2022, 134, .	1.6	0
33	Nickel ^{II} -catalyzed asymmetric photoenolization/Mannich reaction of (2-alkylphenyl) ketones. Chemical Science, 2022, 13, 8576-8582.	3.7	8
34	Asymmetric synthesis of chromanone lactones <i>via</i> vinylogous conjugate addition of butenolide to 2-ester chromones. Chemical Science, 2022, 13, 8871-8875.	3.7	10
35	Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32747-32760.	4.0	9
36	Asymmetric Catalytic Reactions of Donor–Acceptor Cyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 9192-9204.	7.2	113

3

#	Article	IF	CITATIONS
37	Multisubstituted pyrazole synthesis via [3 + 2] cycloaddition/rearrangement/N H insertion cascade reaction of α-diazoesters and ynones. Chinese Chemical Letters, 2021, 32, 132-135.	4.8	22
38	Catalytic asymmetric formal [3+2] cycloaddition of isatogens with azlactones to construct indolin-3-one derivatives. Chemical Communications, 2021, 57, 239-242.	2.2	19
39	Asymmetric Catalytic Reactions of Donor–Acceptor Cyclopropanes. Angewandte Chemie, 2021, 133, 9276-9288.	1.6	24
40	Catalytic asymmetric addition of thiols to silyl glyoxylates for synthesis of multi-hetero-atom substituted carbon stereocenters. Chemical Science, 2021, 12, 7498-7503.	3.7	7
41	Asymmetric catalytic [4+3] cycloaddition of <i>ortho</i> communications, 2021, 57, 3018-3021.	2.2	23
42	Catalytic asymmetric synthesis of spirocyclobutyl oxindoles and beyond <i>via</i> [2+2] cycloaddition and sequential transformations. Chemical Science, 2021, 12, 9991-9997.	3.7	22
43	Catalytic enantioselective synthesis of macrodiolides and their application in chiral recognition. Chemical Science, 2021, 12, 2940-2947.	3.7	12
44	Chiral Lewis acid-bonded picolinaldehyde enables enantiodivergent carbonyl catalysis in the Mannich/condensation reaction of glycine ester. Chemical Science, 2021, 12, 4353-4360.	3.7	21
45	Organocatalytic asymmetric synthesis of benzothiazolopyrimidines $\langle i \rangle via \langle i \rangle$ a [4 + 2] cycloaddition of azlactones with 2-benzothiazolimines. Organic Chemistry Frontiers, 2021, 8, 5705-5709.	2.3	16
46	Catalytic asymmetric multicomponent reactions of isocyanide, isothiocyanate and alkylidene malonates. Chemical Communications, 2021, 57, 7288-7291.	2.2	4
47	Catalytic Asymmetric Homologation of Ketones with α-Alkyl α-Diazo Esters. Journal of the American Chemical Society, 2021, 143, 2394-2402.	6.6	53
48	Catalytic asymmetric [3+2] cycloaddition of isom $\tilde{A}\frac{1}{4}$ nchnones with methyleneindolinones. Chemical Communications, 2021, 57, 8917-8920.	2.2	6
49	Enantioselective [4 + 2] Cycloaddition/Cyclization Cascade Reaction and Total Synthesis of <i>cis</i> -Bis(cyclotryptamine) Alkaloids. Organic Letters, 2021, 23, 1856-1861.	2.4	19
50	Biomimetic Slippery PDMS Film with Papillae-Like Microstructures for Antifogging and Self-Cleaning. Coatings, 2021, 11, 238.	1.2	7
51	Catalytic Asymmetric Hydroacyloxylation/Ring-Opening Reaction of Ynamides, Acids, and Aziridines. Organic Letters, 2021, 23, 2954-2958.	2.4	8
52	Chiral Cobalt(II) Complex Catalyzed Asymmetric [2,3]-Sigmatropic Rearrangement of Allylic Selenides with $\hat{l}\pm -D$ iazo Pyrazoleamides. CCS Chemistry, 2021, 3, 1423-1433.	4.6	26
53	Catalytic asymmetric Nakamura reaction by gold(I)/chiral N,Nʹ-dioxide-indium(III) or nickel(II) synergistic catalysis. Nature Communications, 2021, 12, 3012.	5.8	22
54	Asymmetric Catalytic Vinylogous Addition Reactions Initiated by Meinwald Rearrangement of Vinyl Epoxides. Angewandte Chemie - International Edition, 2021, 60, 14521-14527.	7.2	24

#	Article	IF	CITATIONS
55	Investigation of the Turbulent Boundary Layer Structure over a Sparsely Spaced Biomimetic Spine-Covered Protrusion Surface. ACS Omega, 2021, 6, 14220-14229.	1.6	3
56	Asymmetric Catalytic Vinylogous Addition Reactions Initiated by Meinwald Rearrangement of Vinyl Epoxides. Angewandte Chemie, 2021, 133, 14642-14648.	1.6	7
57	Enantioselective Synthesis of 3â€Substituted 3â€Aminoâ€2â€oxindoles by Amination with Anilines. Chemistry - A European Journal, 2021, 27, 9272-9275.	1.7	13
58	Enantioselective Formal Vinylogous N–H Insertion of Secondary Aliphatic Amines Catalyzed by a High-Spin Cobalt(II) Complex. Journal of the American Chemical Society, 2021, 143, 9648-9656.	6.6	41
59	Numerical analysis of drag reduction characteristics of biomimetic puffer skin: Effect of spinal arrangement. AIP Advances, 2021, 11, .	0.6	4
60	Asymmetric catalytic 1,3-dipolar cycloaddition of \hat{l} ±-diazoesters for synthesis of 1-pyrazoline-based spirochromanones and beyond. Science China Chemistry, 2021, 64, 1355-1360.	4.2	24
61	Enantioselective Isocyanide-based Multicomponent Reaction with Alkylidene Malonates and Phenols. Organic Letters, 2021, 23, 5261-5265.	2.4	9
62	Asymmetric Catalytic Concise Synthesis of Hetero-3,3′-Bisoxindoles for the Construction of Bispyrroloindoline Alkaloids. CCS Chemistry, 2021, 3, 1894-1902.	4.6	30
63	Iron-Catalyzed Enantioselective Radical Carboazidation and Diazidation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Compounds. Journal of the American Chemical Society, 2021, 143, 11856-11863.	6.6	50
64	Asymmetric Catalytic Epoxidation of Terminal Enones for the Synthesis of Triazole Antifungal Agents. Organic Letters, 2021, 23, 6961-6966.	2.4	14
65	Asymmetric Catalytic Synthesis of Hexahydropyrroloâ€isoquinolines via Threeâ€Component 1,3â€Dipolarâ€Cycloaddition. Chemistry - A European Journal, 2021, 27, 14841-14845.	1.7	13
66	Coupled Superhydrophilic PMMA Film with Inverted Pyramid Microstructures for Antireflection and Antifogging Properties. Coatings, 2021, 11, 1107.	1.2	1
67	Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Protrusive Surfaces Inspired by Pufferfish Skin: Effects of Spinal Density and Diameter. Langmuir, 2021, 37, 11804-11817.	1.6	9
68	Thriving artificial underwater drag-reduction materials inspired from aquatic animals: progresses and challenges. RSC Advances, 2021, 11, 3399-3428.	1.7	32
69	Asymmetric synthesis of dihydro-1,3-dioxepines by Rh(<scp>ii</scp>)/Sm(<scp>iii</scp>) relay catalytic three-component tandem [4 + 3]-cycloaddition. Chemical Science, 2021, 12, 5458-5463.	3.7	17
70	Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Surface with Spine-Covered Protrusion Inspired by Pufferfish Skin. Arabian Journal for Science and Engineering, 2021, 46, 2865-2875.	1.7	8
71	Enantioselective Nucleophilic Aromatic Substitution Reaction of Azlactones to Synthesize Quaternary α-Amino Acid Derivatives. Synlett, 2021, 32, 587-592.	1.0	3
72	Asymmetric cycloisomerization/[3 + 2] cycloaddition for the synthesis of chiral spiroisobenzofuran-1,3′-pyrrolidine derivatives. Organic Chemistry Frontiers, 2021, 8, 6874-6880.	2.3	7

#	Article	IF	CITATIONS
73	Diastereo- and Enantioselective Synthesis of 3-Allyl-3-hydroxyoxindoles via Allylation of Isatins. Organic Letters, 2021, 23, 8419-8423.	2.4	13
74	Catalytic Asymmetric Halogenation/Semipinacol Rearrangement of 3â€Hydroxylâ€3â€vinyl Oxindoles: A Stereodivergent Kinetic Resolution Process. Angewandte Chemie - International Edition, 2021, 60, 26599-26603.	7.2	18
75	Catalytic Asymmetric Halogenation/Semipinacol Rearrangement of 3â€Hydroxylâ€3â€vinyl Oxindoles: A Stereodivergent Kinetic Resolution Process. Angewandte Chemie, 2021, 133, 26803.	1.6	3
76	Enantioselective Synthesis of Nitriles Containing a Quaternary Carbon Center by Michael Reactions of Silyl Ketene Imines with 1-Acrylpyrazoles. Journal of the American Chemical Society, 2021, 143, 19091-19098.	6.6	20
77	Asymmetric synthesis of dihydrocarbazoles through a Friedel–Crafts alkylation/annulation sequential reaction of indoles. Chemical Communications, 2021, 57, 13138-13141.	2.2	6
78	Chiral Sc ^{III} â€" <i>N</i> , <i>N</i> a€²-Dioxide-Catalyzed 1,3-Dipolar Cycloaddition of Diaziridines with Chalcones. Organic Letters, 2020, 22, 93-97.	2.4	25
79	A Bispidine-Based Chiral Amine Catalyst for Asymmetric Mannich Reaction of Ketones with Isatin Ketimines. Organic Letters, 2020, 22, 8708-8713.	2.4	17
80	Lewis acid catalysed asymmetric cascade reaction of cyclopropyl ketones: concise synthesis of pyrrolobenzothiazoles. Chemical Communications, 2020, 56, 13429-13432.	2.2	16
81	Catalytic asymmetric synthesis of 3,2′-pyrrolinyl spirooxindoles via conjugate addition/Schmidt-type rearrangement of vinyl azides and (E)-alkenyloxindoles. Chemical Science, 2020, 11, 11492-11497.	3.7	14
82	Nickel($\langle scp \rangle ii \langle scp \rangle$)-catalyzed asymmetric thio-Claisen rearrangement of \hat{l}_{\pm} -diazo pyrazoleamides with thioindoles. Chemical Communications, 2020, 56, 10002-10005.	2.2	21
83	Lewis acid-catalyzed asymmetric reactions of \hat{l}^2 , \hat{l}^3 -unsaturated 2-acyl imidazoles. Nature Communications, 2020, 11, 3869.	5.8	24
84	Enantioselective dicarbofunctionalization of (<i>E</i>)-alkenyloxindoles with pyridinium salts by chiral Lewis acid/photo relay catalysis. Chemical Communications, 2020, 56, 12757-12760.	2.2	6
85	Chiral Fe(<scp>ii</scp>) complex catalyzed enantioselective [1,3] O-to-C rearrangement of alkyl vinyl ethers and synthesis of chromanols and beyond. Chemical Science, 2020, 11, 10101-10106.	3.7	10
86	Asymmetric Catalytic Synthesis of Epoxides via Three-Component Reaction of Diazoacetates, 2-Oxo-3-ynoates, and Nitrosoarenes. Organic Letters, 2020, 22, 6744-6749.	2.4	10
87	Diversified Transformations of Tetrahydroindolizines to Construct Chiral 3-Arylindolizines and Dicarbofunctionalized 1,5-Diketones. Journal of the American Chemical Society, 2020, 142, 15975-15985.	6.6	58
88	Catalytic Asymmetric Threeâ€component Hydroacyloxylation/ 1,4â€Conjugate Addition of Ynamides. Chemistry - an Asian Journal, 2020, 15, 1953-1956.	1.7	10
89	Catalytic Asymmetric Addition Reactions of Formaldehyde <i>N</i> , <i>N</i> -Dialkylhydrazone to Synthesize Chiral Nitrile Derivatives. Organic Letters, 2020, 22, 5217-5222.	2.4	13
90	Catalytic Asymmetric Acyloin Rearrangements of α-Ketols, α-Hydroxy Aldehydes, and α-Iminols by <i>N</i> , <i>N</i> ,600,000,000,000,000,000,000,000,000,00	2.4	26

#	Article	IF	CITATIONS
91	A chiral cobalt(<scp>ii</scp>) complex catalyzed enantioselective aza-Piancatelli rearrangement/Diels–Alder cascade reaction. Chemical Science, 2020, 11, 3862-3867.	3.7	24
92	Research on the drag reduction property of puffer (<scp><i>Takifugu flavidus</i></scp>) spinal nonsmooth structure surface. Microscopy Research and Technique, 2020, 83, 795-803.	1.2	12
93	Asymmetric Catalytic Diverse Ring Opening/Cycloadditions of Cyclobutenones with (E)-Alkenyloxindoles and (E)-Dioxopyrrolidines. Organic Letters, 2020, 22, 2645-2650.	2.4	26
94	Kinetic Resolution of Propargylic Ethers via [2,3]-Wittig Rearrangement to Synthesize Chiral α-Hydroxyallenes. Organic Letters, 2020, 22, 2692-2696.	2.4	8
95	Asymmetric Synthesis of Axially Chiral Anilides via Organocatalytic Atroposelective N-Acylation. Organic Letters, 2020, 22, 5331-5336.	2.4	31
96	Chiral N,N′-dioxide/Mg(OTf)2 complex-catalyzed asymmetric [2,3]-rearrangement of in situ generated ammonium salts. Chemical Science, 2020, 11, 3068-3073.	3.7	15
97	Tandem Insertion–[1,3]â€Rearrangement: Highly Enantioselective Construction of αâ€Aminoketones. Angewandte Chemie, 2020, 132, 8129-8133.	1.6	12
98	Tandem Insertion–[1,3]â€Rearrangement: Highly Enantioselective Construction of αâ€Aminoketones. Angewandte Chemie - International Edition, 2020, 59, 8052-8056.	7.2	47
99	Chiral <i>N</i> , <i>N</i> ′-dioxide–iron(<scp>iii</scp>)-catalyzed asymmetric sulfoxidation with hydrogen peroxide. Chemical Communications, 2020, 56, 3233-3236.	2.2	16
100	Catalytic Asymmetric Tandem Cycloisomerization/[5+2] Cycloaddition Reaction of <i>N</i> -Aryl Nitrone Alkynes with Methyleneindolinones. Organic Letters, 2020, 22, 1034-1039.	2.4	20
101	Rapid Fabrication of Bio-inspired Antireflection Film Replicating From Cicada Wings. Journal of Bionic Engineering, 2020, 17, 34-44.	2.7	27
102	Enantioselective Imino-Ene Reaction of <i>N</i> -Sulfonyl Ketimines with Silyl Enol Ethers: Access to Chiral Benzosultams. Organic Letters, 2020, 22, 1390-1395.	2.4	13
103	An asymmetric hydrocyanation/Michael reaction of α-diazoacetates <i>via</i> Cu(<scp>i</scp>)/chiral guanidine catalysis. Chemical Communications, 2020, 56, 2155-2158.	2.2	14
104	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie - International Edition, 2020, 59, 4846-4850.	7.2	15
105	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie, 2020, 132, 4876-4880.	1.6	4
106	Catalytic Asymmetric Halohydroxylation of α,βâ€Unsaturated Ketones with Water as the Nucleophile. Advanced Synthesis and Catalysis, 2020, 362, 1982-1987.	2.1	22
107	Bimetallic Catalytic Tandem Reaction of Acyclic Enynones: Enantioselective Access to Tetrahydrobenzofuran Derivatives. Organic Letters, 2020, 22, 3551-3556.	2.4	22
108	Chiral & amp; lt; italic & amp; lt; ltalic & amp; lt; italic & amp; lt; ltalic & amp; ltalic & a	0.4	31

#	Article	IF	Citations
109	Organocatalytic Asymmetric Michael/Dieckmann Cyclization Reaction of Alkynones To Construct Spirocyclopentene Oxindoles. Organic Letters, 2019, 21, 6897-6902.	2.4	22
110	Asymmetric Catalytic Formal 1,4â€Allylation of β,γâ€Unsaturated αâ€Ketoesters: Allylboration/Oxyâ€Cope Rearrangement. Angewandte Chemie, 2019, 131, 11972-11977.	1.6	8
111	Asymmetric Catalytic [2,3]â€Stevens and Sommelet–Hauser Rearrangements of αâ€Diazo Pyrazoleamides with Sulfides. Angewandte Chemie - International Edition, 2019, 58, 13492-13498.	7.2	52
112	Kinetic Resolution of Aziridines via Catalytic Asymmetric Ring-Opening Reaction with Mercaptobenzothiazoles. Organic Letters, 2019, 21, 5928-5932.	2.4	11
113	Diastereo- and Enantioselective 1,6-Conjugate Addition of 2-Azaarylacetamides to <i>para</i> -Quinone Methides. Organic Letters, 2019, 21, 6063-6067.	2.4	24
114	Divergent Synthesis of Enantioenriched \hat{l}^2 -Functional Amines via Desymmetrization of meso-Aziridines with Isocyanides. Organic Letters, 2019, 21, 6096-6101.	2.4	32
115	Enantioselective Synthesis of Hydrothiazole Derivatives via an Isocyanide-Based Multicomponent Reaction. Organic Letters, 2019, 21, 8771-8775.	2.4	21
116	Phragmites Communis Leaves with Anisotropy, Superhydrophobicity and Self-Cleaning Effect and Biomimetic Polydimethylsiloxane (PDMS) Replicas. Coatings, 2019, 9, 541.	1.2	6
117	Asymmetric Synthesis of Oxaâ€Bridged Oxazocines through a Catalytic Rh Zn Relay [4+3] Cycloaddition Reaction. Angewandte Chemie, 2019, 131, 18609-18613.	1.6	5
118	Asymmetric Synthesis of Oxaâ€Bridged Oxazocines through a Catalytic Rh ^{II} /Zn ^{II} Relay [4+3] Cycloaddition Reaction. Angewandte Chemie - International Edition, 2019, 58, 18438-18442.	7.2	34
119	Asymmetric Catalytic [2,3]â€Stevens and Sommelet–Hauser Rearrangements of αâ€Diazo Pyrazoleamides with Sulfides. Angewandte Chemie, 2019, 131, 13626-13632.	1.6	10
120	Catalytic Asymmetric Construction of \hat{l}^2 -Azido Amides and Esters via Haloazidation. Organic Letters, 2019, 21, 1170-1175.	2.4	28
121	Bimetallic Catalytic Asymmetric Tandem Reaction of βâ€Alkynyl Ketones to Synthesize 6,6â€Spiroketals. Angewandte Chemie - International Edition, 2019, 58, 4017-4021.	7.2	69
122	Asymmetric construction of dihydrobenzofuran-2,5-dione derivatives <i>via</i> desymmetrization of <i>p</i> -quinols with azlactones. Chemical Communications, 2019, 55, 87-90.	2,2	31
123	Reversal of enantioselectivity in chiral metal complex-catalyzed asymmetric reactions. Organic and Biomolecular Chemistry, 2019, 17, 6538-6550.	1.5	38
124	Asymmetric Catalytic Formal 1,4â€Allylation of β,γâ€Unsaturated αâ€Ketoesters: Allylboration/Oxyâ€Cope Rearrangement. Angewandte Chemie - International Edition, 2019, 58, 11846-11851.	7.2	30
125	Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of <i>meso</i> disubstituted cyclohetones. Chemical Science, 2019, 10, 7003-7008.	3.7	16
126	Asymmetric Synthesis of $\hat{l}\pm,\hat{l}^2$ -Epoxy- \hat{l}^3 -lactams through Tandem Darzens/Hemiaminalization Reaction. Organic Letters, 2019, 21, 4713-4716.	2.4	17

#	Article	IF	CITATIONS
127	Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nature Communications, 2019, 10, 2116.	5.8	67
128	Asymmetric Synthesis of <i>P</i> -Stereogenic Compounds via Thulium(III)-Catalyzed Desymmetrization of Dialkynylphosphine Oxides. ACS Catalysis, 2019, 9, 4834-4840.	5.5	59
129	Flexible Self-Cleaning Broadband Antireflective Film Inspired by the Transparent Cicada Wings. ACS Applied Materials & Description (2019), 11, 17019-17027.	4.0	67
130	Enantioselective Synthesis of 4-Hydroxy-dihydrocoumarins via Catalytic Ring Opening/Cycloaddition of Cyclobutenones. Organic Letters, 2019, 21, 2388-2392.	2.4	16
131	Chiral Zinc(II)â€Catalyzed Enantioselective Tandem αâ€Alkenyl Addition/Proton Shift Reaction of Silyl Enol Ethers with Ketimines. Angewandte Chemie, 2019, 131, 2486-2490.	1.6	4
132	A nickel(<scp>ii</scp>)-catalyzed asymmetric intramolecular Alder-ene reaction of 1,7-dienes. Chemical Communications, 2019, 55, 4479-4482.	2.2	16
133	Chiral <i>N</i> , <i>N</i> , <i>N</i> ′â€Dioxide/Tm(OTf) ₃ Complexâ€Catalyzed Asymmetric Bisvinylogous Mannich Reaction of Silyl Ketene Acetal with Aldimines. Advanced Synthesis and Catalysis, 2019, 361, 2295-2300.	2.1	8
134	Enantioselective Vinylogous Michael–Aldol Reaction To Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Organic Letters, 2019, 21, 1632-1636.	2.4	38
135	Titelbild: Diversified Cycloisomerization/Diels–Alder Reactions of 1,6â€Enynes through Bimetallic Relay Asymmetric Catalysis (Angew. Chem. 16/2019). Angewandte Chemie, 2019, 131, 5191-5191.	1.6	O
136	Bimetallic Catalytic Asymmetric Tandem Reaction of βâ€Alkynyl Ketones to Synthesize 6,6â€Spiroketals. Angewandte Chemie, 2019, 131, 4057-4061.	1.6	21
137	Diversified Cycloisomerization/Diels–Alder Reactions of 1,6â€Enynes through Bimetallic Relay Asymmetric Catalysis. Angewandte Chemie, 2019, 131, 5381-5385.	1.6	11
138	Diversified Cycloisomerization/Diels–Alder Reactions of 1,6â€Enynes through Bimetallic Relay Asymmetric Catalysis. Angewandte Chemie - International Edition, 2019, 58, 5327-5331.	7.2	36
139	Enantioselective carbene insertion into the N–H bond of benzophenone imine. Chemical Science, 2019, 10, 10305-10309.	3.7	25
140	Chiral Zinc(II)â€Catalyzed Enantioselective Tandem αâ€Alkenyl Addition/Proton Shift Reaction of Silyl Enol Ethers with Ketimines. Angewandte Chemie - International Edition, 2019, 58, 2464-2468.	7.2	26
141	Asymmetric Catalytic Halofunctionalization of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carbonyl Compounds. Journal of Organic Chemistry, 2019, 84, 1-13.	1.7	47
142	Lewis acid catalyzed asymmetric [4+2] cycloaddition of cyclobutenones to synthesize $\hat{l}_{\pm},\hat{l}_{-}^2$ -unsaturated \hat{l}_{-}^2 -lactones. Chemical Communications, 2018, 54, 3375-3378.	2.2	20
143	Efficient Catalytic Enantioselective Hydroxyamination of αâ€Arylâ€Î±â€Cyanoacetates with 2â€Nitrosopyridines. Chemistry - A European Journal, 2018, 24, 4289-4293.	1.7	5
144	Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle–Kirmse Reaction of α-Diazo Pyrazoleamides. Journal of the American Chemical Society, 2018, 140, 3299-3305.	6.6	113

#	Article	IF	CITATIONS
145	Asymmetric Catalytic Double Michael Additions for the Synthesis of Spirooxindoles. Chemistry - A European Journal, 2018, 24, 3703-3706.	1.7	35
146	Asymmetric ring-opening of cyclopropyl ketones with β-naphthols catalyzed by a chiral ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′-dioxide–scandium(⟨scp⟩iii⟨ scp⟩) complex. Organic Chemistry Frontiers, 2018, 5, 1293-1296.	2.3	37
147	Flourishing Bioinspired Antifogging Materials with Superwettability: Progresses and Challenges. Advanced Materials, 2018, 30, e1704652.	11.1	161
148	A chiral scandium-complex-catalyzed asymmetric inverse-electron-demand oxa-Diels–Alder reaction of <i>>o</i> -quinone methides with fulvenes. Chemical Communications, 2018, 54, 74-77.	2.2	48
149	Copper/guanidine-catalyzed asymmetric alkynylation of isatin-derived ketimines. Chemical Communications, 2018, 54, 678-681.	2.2	41
150	Chiral <i>N,N′</i> êDioxide/Sc ^{ΙΙΙ} Complexâ€Catalyzed Asymmetric Ringâ€Opening Reactio Cyclopropyl Ketones with Indoles. Advanced Synthesis and Catalysis, 2018, 360, 2608-2612.	n of 2.1	26
151	Highly Regio―and Enantioselective Nitroso Dielsâ^'Alder Reaction of 1,3â€Dieneâ€1â€carbamates Catalyzed by Chiral <i>N,N′</i> à€Dioxide/Copper(II) Complex. Advanced Synthesis and Catalysis, 2018, 360, 186-191.	2.1	7
152	Asymmetric synthesis of 3-aminodihydrocoumarins <i>via</i> the chiral guanidine catalyzed cascade reaction of azlactones. Organic Chemistry Frontiers, 2018, 5, 32-35.	2.3	37
153	Diastereodivergent asymmetric Michael-alkylation reactions using chiral <i>N</i> , <i>N</i> ,ê2-dioxide/metal complexes. Chemical Science, 2018, 9, 688-692.	3.7	43
154	Nickel(ii)-catalyzed enantioselective \hat{l}_{\pm} -alkylation of \hat{l}^2 -ketoamides with phenyliodonium ylideviaa radical process. Chemical Communications, 2018, 54, 12254-12257.	2.2	17
155	Catalytic enantioselective ene-type reactions of vinylogous hydrazone: construction of \hat{l} ±-methylene- \hat{l} 3-butyrolactone derivatives. Chemical Communications, 2018, 54, 12511-12514.	2.2	19
156	Duale Nickel―und Brønstedâ€ S Ãureâ€Katalyse für Hydroalkenylierungen. Angewandte Chemie, 2018, 130, 16842-16844.	1.6	1
157	Dual Nickel and Brønsted Acid Catalysis for Hydroalkenylation. Angewandte Chemie - International Edition, 2018, 57, 16604-16605.	7.2	11
158	Chiral Lewis Acid Catalyzed Reactions of αâ€Diazoester Derivatives: Construction of Dimeric Polycyclic Compounds. Angewandte Chemie, 2018, 130, 16408-16411.	1.6	8
159	Chiral guanidines and their derivatives in asymmetric synthesis. Chemical Society Reviews, 2018, 47, 8525-8540.	18.7	116
160	Catalytic Asymmetric Ring-Opening/Cyclopropanation of Cyclic Sulfur Ylides: Construction of Sulfur-Containing Spirocyclopropyloxindoles with Three Vicinal Stereocenters. Organic Letters, 2018, 20, 7794-7797.	2.4	25
161	Catalytic Asymmetric Chemodivergent C2 Alkylation and $[3 + 2]$ -Cycloaddition of 3-Methylindoles with Aziridines. ACS Catalysis, 2018, 8, 10261-10266.	5.5	35
162	Nickel(II)â€Catalyzed Asymmetric Propargyl [2,3]â€Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angewandte Chemie, 2018, 130, 8870-8874.	1.6	13

#	Article	IF	CITATIONS
163	Chiral Guanidine/Copper Catalyzed Asymmetric Azideâ€Alkyne Cycloaddition/[2+2] Cascade Reaction. Angewandte Chemie, 2018, 130, 17094-17098.	1.6	6
164	Chiral Guanidine/Copper Catalyzed Asymmetric Azideâ€Alkyne Cycloaddition/[2+2] Cascade Reaction. Angewandte Chemie - International Edition, 2018, 57, 16852-16856.	7.2	44
165	Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angewandte Chemie, 2018, 130, 16792-16796.	1.6	20
166	Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 16554-16558.	7.2	61
167	Enantioselective [2+2] Photocycloaddition Reactions of Enones and Olefins with Visible Light Mediated by <i>N</i> , <i>N</i> ,ê<2â€Dioxide–Metal Complexes. Chemistry - A European Journal, 2018, 24, 19361-19367.	1.7	38
168	Chiral Lewis Acid Catalyzed Reactions of αâ€Diazoester Derivatives: Construction of Dimeric Polycyclic Compounds. Angewandte Chemie - International Edition, 2018, 57, 16176-16179.	7.2	23
169	Copper-Catalyzed Asymmetric Addition of Tertiary Carbon Nucleophiles to 2 <i>H</i> -Azirines: Access to Chiral Aziridines with Vicinal Tetrasubstituted Stereocenters. Organic Letters, 2018, 20, 5601-5605.	2.4	32
170	Zinc(II)-Catalyzed Asymmetric Diels–Alder Reaction of (<i>E</i>)-1-Phenyl Dienes with β,γ-Unsaturated α-Ketoesters. Journal of Organic Chemistry, 2018, 83, 12527-12534.	1.7	12
171	Chiral <i>N</i> , <i>N</i> ′â€Dioxide/Scandium(III)â€Catalyzed Asymmetric Alkylation of <i>N</i> â€Unprotected 3â€Substituted Oxindoles. Advanced Synthesis and Catalysis, 2018, 360, 4301-4305.	2.1	13
172	Enantioselective $[3 + 2]$ cycloaddition and rearrangement of thiazolium salts to synthesize thiazole and 1,4-thiazine derivatives. Organic Chemistry Frontiers, 2018, 5, 2126-2131.	2.3	15
173	Asymmetric Synthesis of Fused Bicyclic <i>N,O</i> ―and <i>O,O</i> â€Acetals via Cascade Reaction by Gold(I)/ <i>N,N</i> â€2â€Dioxideâ€Nickel(II) Bimetallic Relay Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 2831-2835.	2.1	40
174	Stereodivergent synthesis of vicinal quaternary-quaternary stereocenters and bioactive hyperolactones. Nature Communications, 2018, 9, 1968.	5.8	67
175	Asymmetric Three-Component Reaction for the Synthesis of Tetrasubstituted Allenoates via Allenoate-Copper Intermediates. CheM, 2018, 4, 1658-1672.	5.8	74
176	Chiral Amino Acidsâ€Derived Catalysts and Ligands. Chinese Journal of Chemistry, 2018, 36, 791-797.	2.6	197
177	Catalytic Asymmetric Diels–Alder Reaction/[3,3] Sigmatropic Rearrangement Cascade of 1â€√hiocyanatobutadienes. Angewandte Chemie - International Edition, 2018, 57, 9113-9116.	7.2	26
178	Nickel(II)â€Catalyzed Asymmetric Propargyl [2,3]â€Wittig Rearrangement of Oxindole Derivatives: A Chiral Amplification Effect. Angewandte Chemie - International Edition, 2018, 57, 8734-8738.	7.2	33
179	Chiral organobases: Properties and applications in asymmetric catalysis. Chinese Chemical Letters, 2018, 29, 1201-1208.	4.8	32
180	Asymmetric Synthesis of Tetrahydroindolizines by Bimetallic Relay Catalyzed Cycloaddition of Pyridinium Ylides. Angewandte Chemie - International Edition, 2018, 57, 12323-12327.	7.2	87

#	Article	IF	Citations
181	Bio-inspired antifogging PDMS coupled micro-pillared superhydrophobic arrays and SiO ₂ coatings. RSC Advances, 2018, 8, 26497-26505.	1.7	20
182	Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chemical Reviews, 2018, 118, 7586-7656.	23.0	223
183	Highly enantioselective desymmetrization of prochiral cyclic $\hat{l}\pm,\hat{l}\pm$ -dicyanoalkenes <i>via</i> the direct vinylogous Michael/cyclization domino reaction. Organic Chemistry Frontiers, 2018, 5, 2505-2509.	2.3	13
184	Dynamic kinetic asymmetric transformations of β-halo-α-keto esters by <i>N</i> , <i>N</i> ê<²-dioxide/Ni(<scp>ii</scp>)-catalyzed carbonyl-ene reaction. Chemical Communications, 2018, 54, 8901-8904.	2.2	15
185	Catalytic Asymmetric [8+3] Annulation Reactions of Tropones or Azaheptafulvenes with <i>meso</i> å€Aziridines. Chemistry - A European Journal, 2018, 24, 13428-13431.	1.7	40
186	Enantioselective Synthesis of 2,2,3-Trisubstituted Indolines via Bimetallic Relay Catalysis of \hat{l} ±-Diazoketones with Enones. Organic Letters, 2018, 20, 4536-4539.	2.4	37
187	Enantioselective Formal $[4+2]$ Annulation of <i>ortho</i> -Quinone Methides with <i>ortho</i> -Hydroxyphenyl $\hat{l}_{\pm},\hat{l}^{2}$ -Unsaturated Compounds. Journal of Organic Chemistry, 2018, 83, 10175-10185.	1.7	33
188	<i>N</i> , <i>N</i> ê²-Dioxide/Gd(OTf) ₃ Complex-Promoted Asymmetric Aldol Reaction of Silyl Ketene Imines with Isatins: Water Plays an Important Role. Organic Letters, 2018, 20, 5314-5318.	2.4	16
189	Asymmetric synthesis of polysubstituted methylenecyclobutanes <i>via</i> catalytic [2+2] cycloaddition reactions of <i>N</i> -allenamides. Chemical Communications, 2018, 54, 10511-10514.	2.2	23
190	Catalytic Asymmetric Synthesis of Chiral Spiroâ€cyclopropyl Oxindoles from 3â€Alkenylâ€oxindoles and Sulfoxonium Ylides. Advanced Synthesis and Catalysis, 2018, 360, 4089-4093.	2.1	39
191	Chiral Lewis acid-catalyzed enantioselective cyclopropanation and C–H insertion reactions of vinyl ketones with α-diazoesters. Chemical Communications, 2018, 54, 9837-9840.	2.2	18
192	Asymmetric Synthesis of Tetrahydroindolizines by Bimetallic Relay Catalyzed Cycloaddition of Pyridinium Ylides. Angewandte Chemie, 2018, 130, 12503-12507.	1.6	25
193	Catalytic Asymmetric Inverse-Electron-Demand Hetero-Diels–Alder Reaction of Dioxopyrrolidines with Hetero-Substituted Alkenes. Journal of Organic Chemistry, 2018, 83, 8679-8687.	1.7	24
194	Catalytic Asymmetric Diels–Alder Reaction/[3,3] Sigmatropic Rearrangement Cascade of 1â€Thiocyanatobutadienes. Angewandte Chemie, 2018, 130, 9251-9254.	1.6	9
195	Chiral <i>N</i> , <i>N′</i> -Dioxide/Lanthanide(III) Complex Catalyzed Asymmetric Bisvinylogous Mukaiyama Aldol Reactions. Organic Letters, 2017, 19, 332-335.	2.4	24
196	Highly diastereo- and enantioselective synthesis of spirooxindole-cyclohexaneamides through N,N′-dioxide/Ni(ii)-catalyzed Diels–Alder reactions. Chemical Communications, 2017, 53, 2060-2063.	2.2	40
197	Asymmetric Organocatalytic Michael/Michael/Henry Sequence to Construct Cyclohexanes with Six Vicinal Stereogenic Centers. Synlett, 2017, 28, 966-969.	1.0	16
198	Catalytic asymmetric Meerweinâ \in "Ponndorfâ \in "Verley reduction of glyoxylates induced by a chiral N,Nâ \in 2-dioxide/Y(OTf) ₃ complex. Chemical Communications, 2017, 53, 3232-3235.	2.2	17

#	Article	IF	CITATIONS
199	Chiral N,N′-dioxide-Sc(NTf ₂) ₃ complex-catalyzed asymmetric bromoamination of chalones with N-bromosuccinimide as both bromine and amide source. Chemical Communications, 2017, 53, 3462-3465.	2.2	18
200	Highly Efficient Asymmetric Synthesis of Chiral γ-Alkenyl Butenolides Catalyzed by Chiral ⟨i⟩N,N⟨ i⟩′-Dioxide–Scandium(III) Complexes. ACS Catalysis, 2017, 7, 3763-3767.	5.5	47
201	Frontispiece: Catalytic Strategies for Diastereodivergent Synthesis. Chemistry - A European Journal, 2017, 23, .	1.7	1
202	Catalytic Asymmetric Inverseâ€Electronâ€Demand Heteroâ€Dielsâ^'Alder Reactions. Chemical Record, 2017, 17, 1184-1202.	2.9	73
203	Asymmetric $[3 + 2]$ Cycloaddition of $2,2\hat{a}\in^2$ -Diester Aziridines To Synthesize Pyrrolidine Derivatives. ACS Catalysis, 2017, 7, 3934-3939.	5.5	39
204	Asymmetric synthesis of chromans via the Friedel–Crafts alkylation–hemiketalization catalysed by an N,N′-dioxide scandium(<scp>iii</scp>) complex. Organic Chemistry Frontiers, 2017, 4, 1647-1650.	2.3	16
205	Chiral N,N′-dioxide/Co(<scp>ii</scp>)-promoted asymmetric 1,3-dipolar cycloaddition of nitrones with methyleneindolinones. Chemical Communications, 2017, 53, 7925-7928.	2.2	37
206	Catalytic asymmetric [2+2] cycloaddition between quinones and fulvenes and a subsequent stereoselective isomerization to 2,3-dihydrobenzofurans. Chemical Communications, 2017, 53, 6585-6588.	2.2	36
207	Construction of Distant Stereocenters by Enantioselective Desymmetrizing Carbonyl–Ene Reaction. Organic Letters, 2017, 19, 3374-3377.	2.4	18
208	A chiral cobalt(ii) complex catalyzed asymmetric formal [3+2] cycloaddition for the synthesis of 1,2,4-triazolines. Chemical Communications, 2017, 53, 4077-4079.	2.2	16
209	<i>N</i> , <i>N′</i> àêDioxide–Lanthanum(III)â€Catalyzed Asymmetric Cyclopropanation of 2â€Cyanoâ€3â€arylacrylates with 2â€Bromomalonates. Advanced Synthesis and Catalysis, 2017, 359, 1831-1836	2.1	18
210	Gold(I)/Chiral <i>N</i> , <i>N′</i> â€Dioxide–Nickel(II) Relay Catalysis for Asymmetric Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. Angewandte Chemie, 2017, 129, 903-906.	1.6	31
211	Gold(I)/Chiral <i>N</i> , <i>N′</i> àêDioxide–Nickel(II) Relay Catalysis for Asymmetric Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 885-888.	7.2	97
212	Chiral N,N′-Dioxide Organocatalyzed Asymmetric Electrophilic α-Cyanation of β-Keto Esters and β-Keto Amides. Journal of Organic Chemistry, 2017, 82, 701-708.	1.7	35
213	Asymmetric Cycloaddition and Cyclization Reactions Catalyzed by Chiral ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′-Dioxide–Metal Complexes. Accounts of Chemical Research, 2017, 50, 2621-2631.	7.6	344
214	Chiral N,N′-dioxide/Sc(OTf) ₃ complex-catalyzed asymmetric dearomatization of β-naphthols. Chemical Communications, 2017, 53, 11759-11762.	2.2	22
215	Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO ₂ coating. RSC Advances, 2017, 7, 45287-45293.	1.7	25
216	Catalytic Asymmetric Direct Vinylogous Aldol Reaction of Isatins with β,γâ€Unsaturated Butenolides. Chemistry - A European Journal, 2017, 23, 16447-16451.	1.7	32

#	Article	IF	Citations
217	Asymmetric Formal [3 + 2]-Cycloaddition of Azomethine Imines with Azlactones To Synthesize Bicyclic Pyrazolidinones. Organic Letters, 2017, 19, 5826-5829.	2.4	28
218	Iron-Catalyzed Asymmetric Haloazidation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Ketones: Construction of Organic Azides with Two Vicinal Stereocenters. Journal of the American Chemical Society, 2017, 139, 13414-13419.	6.6	77
219	Catalytic asymmetric hydroxylative dearomatization of 2-naphthols: synthesis of lacinilene derivatives. Chemical Science, 2017, 8, 6645-6649.	3.7	54
220	Asymmetric Aerobic Oxidative Cross-Coupling of Tetrahydroisoquinolines with Alkynes. ACS Catalysis, 2017, 7, 5654-5660.	5.5	72
221	Catalytic Asymmetric Epoxidation of Electronâ€Deficient Enynes Promoted by Chiral <i>N,N′</i> àêĐioxideâ€Scandium(III) Complex. Advanced Synthesis and Catalysis, 2017, 359, 3454-3459.	2.1	22
222	Nickelâ€Catalyzed Conjugate Addition of Silyl Ketene Imines to In Situ Generated Indolâ€2â€ones: Highly Enantioselective Construction of Vicinal Allâ€Carbon Quaternary Stereocenters. Angewandte Chemie - International Edition, 2017, 56, 13107-13111.	7.2	68
223	Chiral Magnesium(II) Complexâ€Catalyzed Enantioselective Desymmetrization of <i>meso</i> å€Aziridines with Pyrazoles. Advanced Synthesis and Catalysis, 2017, 359, 3532-3537.	2.1	20
224	Nickelâ€Catalyzed Conjugate Addition of Silyl Ketene Imines to In Situ Generated Indolâ€2â€ones: Highly Enantioselective Construction of Vicinal Allâ€Carbon Quaternary Stereocenters. Angewandte Chemie, 2017, 129, 13287-13291.	1.6	18
225	Bioinspired Omnidirectional Self-Stable Reflectors with Multiscale Hierarchical Structures. ACS Applied Materials & Earny; Interfaces, 2017, 9, 29285-29294.	4.0	16
226	Chiral cobalt(ii) complex catalyzed Friedel–Crafts aromatization for the synthesis of axially chiral biaryldiols. Chemical Communications, 2017, 53, 9741-9744.	2.2	35
227	Highly regio-, diastereo- and enantioselective deracemization of axially chiral 3-alkylideneoxindoles. Chemical Communications, 2017, 53, 8763-8766.	2.2	9
228	The asymmetric synthesis of multisubstituted diquinanes via the domino reaction of electron-deficient enynes. Organic Chemistry Frontiers, 2017, 4, 2012-2015.	2.3	9
229	Catalytic Strategies for Diastereodivergent Synthesis. Chemistry - A European Journal, 2017, 23, 6464-6482.	1.7	194
230	Enantioselective Synthesis of Nâ^'Hâ€Free 1,5â€Benzothiazepines. Chemistry - A European Journal, 2017, 23, 554-557.	1.7	45
231	A new approach to the asymmetric Mannich reaction catalyzed by chiral N,N′-dioxide–metal complexes. Chemical Science, 2017, 8, 1238-1242.	3.7	70
232	Chiral Lewis Acid Rare-Earth Metal Complexes in Enantioselective Catalysis. Topics in Organometallic Chemistry, 2017, , 147-191.	0.7	12
233	Kinetic Resolution of Oxaziridines via Chiral Bifunctional Guanidine-Catalyzed Enantioselective \hat{l} ±-Hydroxylation of \hat{l} 2-Keto Esters. Organic Letters, 2016, 18, 3602-3605.	2.4	37
234	Synergistic Kinetic Resolution and Asymmetric Propargyl Claisen Rearrangement for the Synthesis of Chiral Allenes. Angewandte Chemie - International Edition, 2016, 55, 4054-4058.	7.2	80

#	Article	IF	Citations
235	Synergistic Kinetic Resolution and Asymmetric Propargyl Claisen Rearrangement for the Synthesis of Chiral Allenes. Angewandte Chemie, 2016, 128, 4122-4126.	1.6	33
236	Copper/Guanidine atalyzed Asymmetric Alkynylation of Isatins. Angewandte Chemie, 2016, 128, 5372-5375.	1.6	14
237	Bimetallic Gold(I)/Chiral <i>N</i> N′êDioxide Nickel(II) Asymmetric Relay Catalysis: Chemo―and Enantioselective Synthesis of Spiroketals and Spiroaminals. Angewandte Chemie, 2016, 128, 6179-6182.	1.6	34
238	Bimetallic Gold(I)/Chiral <i>N</i> , <i>N′</i> àêĐioxide Nickel(II) Asymmetric Relay Catalysis: Chemo―and Enantioselective Synthesis of Spiroketals and Spiroaminals. Angewandte Chemie - International Edition, 2016, 55, 6075-6078.	7.2	115
239	Catalytic asymmetric $[3 + 3]$ annulation of cyclopropanes with mercaptoacetaldehyde. Organic and Biomolecular Chemistry, 2016, 14, 5914-5917.	1.5	35
240	Efficient Synthesis of Chiral Trisubstituted 1,2â€Allenyl Ketones by Catalytic Asymmetric Conjugate Addition of Malonic Esters to Enynes. Angewandte Chemie - International Edition, 2016, 55, 1859-1863.	7.2	104
241	A N,N′-dioxide/Mg(OTf) ₂ complex catalyzed enantioselective α-addition of isocyanides to alkylidene malonates. Chemical Science, 2016, 7, 4736-4740.	3.7	24
242	Chiral <i>N</i> , <i>N</i> ′â€Dioxideâ€Organocatalyzed Regioâ€; Diastereo―and Enantioselective Michael Addition–Alkylation Reaction. Chemistry - A European Journal, 2016, 22, 15650-15653.	1.7	22
243	Catalytic Asymmetric Intra- and Intermolecular Haloetherification of Enones: An Efficient Approach to (â°)-Centrolobine. ACS Catalysis, 2016, 6, 7778-7783.	5.5	44
244	Highly enantioselective construction of carbazole derivatives via [4+2] cycloaddition of silyloxyvinylindoles and \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}^4 -ketoesters. Chemical Communications, 2016, 52, 10692-10695.	2.2	20
245	Chiral <i>N,N′</i> â€Dioxideâ€Zinc(II) Complexâ€Catalyzed Asymmetric Azaâ€Friedel–Crafts Reaction of Isatinâ€Derived Ketimines with Indoles. Advanced Synthesis and Catalysis, 2016, 358, 3021-3026.	2.1	37
246	Catalytic Michael/Ringâ€Closure Reaction of α,βâ€Unsaturated Pyrazoleamides with Amidomalonates: Asymmetric Synthesis of (â^²)â€Paroxetine. Chemistry - A European Journal, 2016, 22, 15119-15124.	1.7	39
247	Organocatalytic Asymmetric Cascade Reaction of 2-Hydroxyphenyl-Substituted Enones and Isocyanates To Construct 1,3-Benzoxazin-2-ones. Organic Letters, 2016, 18, 5070-5073.	2.4	19
248	Rýcktitelbild: Asymmetric Ring Opening/Cyclization/Retroâ€Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2â€Diamines for the Synthesis of Benzimidazole Derivatives (Angew. Chem. 40/2016). Angewandte Chemie, 2016, 128, 12732-12732.	1.6	0
249	Asymmetric Catalytic Insertion of α-Diazo Carbonyl Compounds into O–H Bonds of Carboxylic Acids. ACS Catalysis, 2016, 6, 6930-6934.	5.5	86
250	Enantioselective construction of branched 1,3-dienyl substituted quaternary carbon stereocenters by asymmetric allenyl Claisen rearrangement. Chemical Communications, 2016, 52, 11963-11966.	2.2	13
251	Asymmetric Ring Opening/Cyclization/Retroâ€Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2â€Diamines for the Synthesis of Benzimidazole Derivatives. Angewandte Chemie, 2016, 128, 12416-12420.	1.6	34
252	Kinetic Resolution of 2 <i>H</i> â€Azirines by Asymmetric Imine Amidation. Angewandte Chemie - International Edition, 2016, 55, 10098-10101.	7.2	45

#	Article	IF	CITATIONS
253	Asymmetric Ring Opening/Cyclization/Retroâ€Mannich Reaction of Cyclopropyl Ketones with Aryl 1,2â€Diamines for the Synthesis of Benzimidazole Derivatives. Angewandte Chemie - International Edition, 2016, 55, 12228-12232.	7.2	90
254	Nickel(II)-Catalyzed Enantioselective $\hat{l}\pm$ -Vinylation of \hat{l}^2 -Keto Amides/Esters with Hypervalent Iodine Salts. Organic Letters, 2016, 18, 5540-5543.	2.4	26
255	Chiral <i>N</i> , <i>N</i> ′â€Dioxide–Scandium(III) Complexâ€Catalyzed Asymmetric Friedel–Crafts Alkylati Reaction of <i>ortho</i> à6€Hydroxybenzyl Alcohols with C3â€Substituted Nâ€Protected Indoles. Chemistry - A European Journal, 2016, 22, 18254-18258.	on 1.7	45
256	A Chiral <i>N</i> , <i>N′</i> êĐioxide–Zn ^{II} Complex Catalyzes the Enantioselective [2+2] Cycloaddition of Alkynones with Cyclic Enol Silyl Ethers. Angewandte Chemie, 2016, 128, 5631-5634.	1.6	19
257	A Chiral <i>N</i> , <i>N′</i> â€Dioxide–Zn ^{ll} Complex Catalyzes the Enantioselective [2+2] Cycloaddition of Alkynones with Cyclic Enol Silyl Ethers. Angewandte Chemie - International Edition, 2016, 55, 5541-5544.	7.2	57
258	N,N′-Dioxide/nickel(<scp>ii</scp>)-catalyzed asymmetric Diels–Alder reaction of cyclopentadiene with 2,3-dioxopyrrolidines and 2-alkenoyl pyridines. Chemical Communications, 2016, 52, 8255-8258.	2.2	37
259	Catalytic asymmetric α-amination of β-keto esters and β-keto amides with a chiral N,N′-dioxide–copper(i) complex. Organic Chemistry Frontiers, 2016, 3, 809-812.	2.3	22
260	Copper/Guanidineâ€Catalyzed Asymmetric Alkynylation of Isatins. Angewandte Chemie - International Edition, 2016, 55, 5286-5289.	7.2	91
261	Synthesis of Chiral Tetrahydrofurans via Catalytic Asymmetric [3 + 2] Cycloaddition of Heterosubstituted Alkenes with Oxiranes. Journal of Organic Chemistry, 2016, 81, 1237-1243.	1.7	32
262	Efficient Synthesis of Chiral Trisubstituted 1,2â€Allenyl Ketones by Catalytic Asymmetric Conjugate Addition of Malonic Esters to Enynes. Angewandte Chemie, 2016, 128, 1891-1895.	1.6	19
263	Asymmetric [3 + 2] cycloaddition of donor–acceptor aziridines with aldehydes via carbon–carbon bond cleavage. Chemical Science, 2016, 7, 3775-3779.	3.7	45
264	Diastereoselective and Enantioselective Alleno-aldol Reaction of Allenoates with Isatins to Synthesis of Carbinol Allenoates Catalyzed by Gold. ACS Catalysis, 2016, 6, 2482-2486.	5 . 5	99
265	Nickel(<scp>ii</scp>)-catalyzed enantioselective cyclopropanation of 3-alkenyl-oxindoles with phenyliodonium ylide via free carbene. Chemical Science, 2016, 7, 2717-2721.	3.7	85
266	Catalytic Asymmetric Inverse-Electron Demand 1,3-Dipolar Cycloaddition of Isoquinolinium Methylides with Enecarbamates by a Chiral $\langle i \rangle N, N \langle i \rangle \hat{a} \in ^2$ -Dioxide/Ag(I) Complex. ACS Catalysis, 2016, 6, 589-592.	5 . 5	28
267	<i>N,N′</i> â€Dioxide/Zinc Bis(trifluoromethylsulfonyl)imide Complex Catalyzed Enantioselective Diels–Alder Reaction of Cyclopentadiene with Alkynones. Advanced Synthesis and Catalysis, 2015, 357, 2045-2049.	2.1	22
268	Regio―and Enantioselective Azaâ€Diels–Alder Reactions of 3â€Vinylindoles: A Concise Synthesis of the Antimalarial Spiroindolone NITD609. Angewandte Chemie - International Edition, 2015, 54, 10958-10962.	7.2	116
269	Theoretical Studies on the Asymmetric Baeyer–Villiger Oxidation Reaction of 4â€Phenylcyclohexanone with <i>m</i> hloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)– <i>N</i> , <i>N</i> , <i>N</i>)â€2â€Dioxide Complexes. Chemistry - A European Journal, 2015, 21, 7264-7277.	1.7	16
270	Chiral <i>N,N′</i> àêĐioxide–Scandium(III)â€Catalyzed Asymmetric Dearomatization of 2â€Naphthols througan Amination Reaction. Chemistry - A European Journal, 2015, 21, 17453-17458.	gh _{1.7}	70

#	Article	IF	Citations
271	Asymmetric Ringâ€Opening of Cyclopropyl Ketones with Thiol, Alcohol, and Carboxylic Acid Nucleophiles Catalyzed by a Chiral ⟨i>N⟨li>,⟨i>N⟨li>′â€Dioxide–Scandium(III) Complex. Angewandte Chemie - International Edition, 2015, 54, 13748-13752.	7.2	112
272	Catalytic asymmetric desymmetrization of N-arylmaleimides: efficient construction of both atom chirality and axial chirality. Chemical Communications, 2015, 51, 10554-10557.	2.2	50
273	Enantioselective synthesis of dihydrocoumarin derivatives by chiral scandium(⟨scp⟩iii⟨/scp⟩)-complex catalyzed inverse-electron-demand hetero-Diels–Alder reaction. Chemical Communications, 2015, 51, 3835-3837.	2.2	111
274	Asymmetric Synthesis of Spirocyclic Oxindoleâ€Fused Tetrahydrothiophenes <i>via N,N′â€</i> Dioxide–Nickel(II) Catalyzed Domino Reaction of 1,4â€Dithianeâ€2,5â€diol with 3â€Alkenyloxind Advanced Synthesis and Catalysis, 2015, 357, 695-700.	o læ:a .	49
275	Asymmetric Dearomatization of Indoles through a Michael/Friedel–Craftsâ€Type Cascade To Construct Polycyclic Spiroindolines. Angewandte Chemie - International Edition, 2015, 54, 4032-4035.	7.2	169
276	Asymmetric Tandem 1,5â€Hydride Shift/Ring Closure for the Synthesis of Chiral Spirooxindole Tetrahydroquinolines. Chemistry - A European Journal, 2015, 21, 1632-1636.	1.7	76
277	Chiral N,N′-dioxide–ln(OTf)3-catalyzed asymmetric vinylogous Mukaiyama aldol reactions. Chemical Communications, 2015, 51, 3106-3108.	2.2	23
278	Reversal of enantioselective Friedel–Crafts C3-alkylation of pyrrole by slightly tuning the amide units of N,N′-dioxide ligands. Chemical Communications, 2015, 51, 8432-8435.	2.2	54
279	Chiral Bifunctional Guanidine-Catalyzed Enantioselective Aza-Henry Reaction of Isatin-Derived Ketimines. Journal of Organic Chemistry, 2015, 80, 3332-3338.	1.7	57
280	Diastereoselectively Switchable Asymmetric Haloaminocyclization for the Synthesis of Cyclic Sulfamates. Chemistry - A European Journal, 2015, 21, 6386-6389.	1.7	38
281	Chiral <i>N</i> , <i>N</i> ,ê <i>N</i> ,6 <i>N</i> ,7 <i>N</i> ,6 <i>N</i> ,7 <i>N</i> ,	2.2	13
282	The $\langle i \rangle N \langle i \rangle, \langle i \rangle N \langle i \rangle$ and $\langle i \rangle N \langle i \rangle$ dioxide/Ni($\langle scp \rangle i \langle scp \rangle$)-catalyzed asymmetric inverse-electron-demand hetero-Dielsae Alder reaction of methyleneindolinones with hetero-substituted alkenes. Chemical Communications, 2015, 51, 11689-11692.	2.2	30
283	A catalytic asymmetric carbonylâ \in ene reaction of \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}_\pm -ketoesters with 5-methyleneoxazolines. Chemical Communications, 2015, 51, 10042-10045.	2.2	34
284	Asymmetric Synthesis of Dihydrofurans via Organocatalytic Domino Michael–Alkylation Reaction. Advanced Synthesis and Catalysis, 2015, 357, 1305-1310.	2.1	37
285	Kinetic resolution of 2,3-epoxy 3-aryl ketones via catalytic asymmetric ring-opening with pyrazole derivatives. Chemical Communications, 2015, 51, 11374-11377.	2.2	26
286	<i>N</i> , <i>N′</i> -Dioxide/Gadolinium(III)-Catalyzed Asymmetric Conjugate Addition of Nitroalkanes to α,β-Unsaturated Pyrazolamides. Journal of Organic Chemistry, 2015, 80, 5704-5712.	1.7	42
287	Cooperative Chiral Guanidine/AgPF6 Catalyzed Asymmetric Isocyanoacetate Aldol Reaction with Isatins. Synlett, 2015, 26, 1545-1548.	1.0	22
288	The asymmetric synthesis of polycyclic 3-spirooxindole alkaloids via the cascade reaction of 2-isocyanoethylindoles. Chemical Communications, 2015, 51, 16076-16079.	2.2	69

#	Article	IF	CITATIONS
289	Direct Synthesis of Chiral Allenoates from the Asymmetric Cï£;H Insertion of αâ€Diazoesters into Terminal Alkynes. Angewandte Chemie - International Edition, 2015, 54, 9512-9516.	7.2	112
290	Asymmetric Synthesis of Furo[3,4â€∢i>b) indoles by Catalytic [3+2] Cycloaddition of Indoles with Epoxides. Chemistry - A European Journal, 2015, 21, 15104-15107.	1.7	37
291	Synthesis of Optically Pure Spiro[cyclohexane-oxindoline] Derivatives via Catalytic Asymmetric Diels–Alder Reaction of Brassard-Type Diene with Methyleneindolines. Journal of Organic Chemistry, 2015, 80, 8836-8842.	1.7	32
292	Organocatalytic dynamic kinetic resolution of azlactones to construct chiral N-acyl amino acid oxime esters. Chemical Communications, 2015, 51, 14897-14900.	2.2	33
293	Ligand Control of Diastereodivergency in Asymmetric Inverse Electron Demand Diels–Alder Reaction. ACS Catalysis, 2015, 5, 6052-6056.	5.5	54
294	Asymmetric [3 + 2] Cycloaddition of Methyleneindolinones with <i>N</i> , <i></i>	1.7	53
295	Catalytic Asymmetric Intramolecular Homologation of Ketones with αâ€Diazoesters: Synthesis of Cyclic αâ€Aryl/Alkyl βâ€Ketoesters. Angewandte Chemie - International Edition, 2015, 54, 1608-1611.	7.2	57
296	Enantioselective Construction of Vicinal Tetrasubstituted Stereocenters by the Mannich Reaction of Silyl Ketene Imines with Isatinâ€Derived Ketimines. Angewandte Chemie - International Edition, 2015, 54, 241-244.	7.2	122
297	Asymmetric Synthesis of 2,3â€Dihydropyrroles by Ringâ€Opening/Cyclization of Cyclopropyl Ketones Using Primary Amines. Angewandte Chemie - International Edition, 2015, 54, 227-230.	7.2	131
298	Direct asymmetric vinylogous Michael addition of 3-alkylidene oxindoles to chalcones catalyzed by a chiral N,N′-dioxide ytterbium(<scp>iii</scp>) complex. Chemical Communications, 2015, 51, 580-583.	2.2	50
299	Advancements in Catalytic Asymmetric Intermolecular Ene-Type Reactions. Synthesis, 2014, 46, 2241-2257.	1.2	25
300	Asymmetric Heteroâ€Diels–Alder Reaction of Danishefsky's Diene with αâ€Ketoesters and Isatins Catalyzed by a Chiral <i>N</i> , <i>N′</i> àâ€Dioxide/Magnesium(II) Complex. Chemistry - A European Journal, 2014, 20, 14493-14498.	1.7	38
301	<i>N</i> , <i>N′</i> àâ€Dioxide/Nickel(II)â€Catalyzed Asymmetric Inverseâ€Electronâ€Demand Heteroâ€Diels–, Reaction of β,γâ€Unsaturated αâ€Ketoesters with Enecarbamates. Chemistry - A European Journal, 2014, 20, 16753-16758.	Alder 1.7	35
302	Asymmetric NH Insertion of Secondary and Primary Anilines under the Catalysis of Palladium and Chiral Guanidine Derivatives. Angewandte Chemie - International Edition, 2014, 53, 1636-1640.	7.2	107
303	Enantioselective Protonation by Azaâ€Michael Reaction between Pyrazoles and αâ€Substituted Vinyl Ketones. Advanced Synthesis and Catalysis, 2014, 356, 3545-3550.	2.1	27
304	Kinetic Resolution of Racemic Mandelic Acid Esters by <i>N</i> , <i>N′</i> àêDioxide–Scandiumâ€Complexâ€Catalyzed Enantiomerâ€Selective Acylation. Chemistry European Journal, 2014, 20, 15884-15890.	- A 7	15
305	Chiral magnesium(ii)-catalyzed asymmetric ring-opening of meso-aziridines with primary alcohols. Chemical Communications, 2014, 50, 6672.	2.2	55
306	<i>N</i> , <i< td=""><td>1.7</td><td>39</td></i<>	1.7	39

#	Article	IF	CITATIONS
307	Asymmetric Reduction of αâ€Amino Ketones with a KBH ₄ Solution Catalyzed by Chiral Lewis Acids. Chemistry - A European Journal, 2014, 20, 13482-13486.	1.7	19
308	Catalytic hetero-ene reactions of 5-methyleneoxazolines: highly enantioselective synthesis of 2,5-disubstituted oxazole derivatives. Chemical Communications, 2014, 50, 7524.	2.2	27
309	Chiral N,N′-dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis. Organic Chemistry Frontiers, 2014, 1, 298.	2.3	370
310	Efficient synthesis of carbazolespirooxindole skeletons via asymmetric Diels–Alder reaction of 3-vinylindoles and methyleneindolinones. Chemical Communications, 2014, 50, 8794.	2.2	74
311	Catalytic asymmetric [3+2] cycloaddition of aromatic aldehydes with oxiranes by C–C bond cleavage of epoxides: highly efficient synthesis of chiral 1,3-dioxolanes. Chemical Communications, 2014, 50, 2161.	2.2	45
312	An asymmetric [3+2] cycloaddition of alkynes with oxiranes by selective C–C bond cleavage of epoxides: highly efficient synthesis of chiral furan derivatives. Chemical Communications, 2014, 50, 11480-11483.	2.2	47
313	Nickel(II)â€Catalyzed Asymmetric Propargyl and Allyl Claisen Rearrangements to Allenyl―and Allylâ€5ubstituted βâ€Ketoesters. Angewandte Chemie - International Edition, 2014, 53, 11579-11582.	7.2	62
314	Magnesium(<scp>ii</scp>)-catalyzed asymmetric hetero-Diels–Alder reaction of Brassard's dienes with isatins. Chemical Communications, 2014, 50, 994-996.	2.2	33
315	Asymmetric Synthesis of Spiro[isoxazolin-3,3′-oxindoles] via the Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Oxides. Journal of Organic Chemistry, 2014, 79, 7703-7710.	1.7	72
316	Chiral Lewis Acid Catalyzed Asymmetric Cycloadditions of Disubstituted Ketenes for the Synthesis of \hat{l}^2 -Lactones and \hat{l}^4 -Lactones. Organic Letters, 2014, 16, 134-137.	2.4	62
317	Asymmetric Synthesis of Spiro-epoxyoxindoles by the Catalytic Darzens Reaction of Isatins with Phenacyl Bromides. Organic Letters, 2014, 16, 4244-4247.	2.4	49
318	Regio- and Enantioselective Baeyer–Villiger Oxidation: Kinetic Resolution of Racemic 2-Substituted Cyclopentanones. Organic Letters, 2014, 16, 3938-3941.	2.4	35
319	Chiral Co(II) complex catalyzed asymmetric Michael reactions of \hat{I}^2 -ketoamides to nitroolefins and alkynones. Tetrahedron Letters, 2014, 55, 3797-3801.	0.7	30
320	Chiral <i>N,N′</i> â€Dioxide–Scandium(III)â€Catalyzed Asymmetric Epoxidation of 2â€Arylideneâ€1,3â€dike with Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2014, 356, 2214-2218.	tones 2.1	16
321	Catalytic Asymmetric [8+2] Cycloaddition for the Construction of Cycloheptatriene-Fused Pyrrolidin-3,3'-Oxindoles. Acta Chimica Sinica, 2014, 72, 856.	0.5	48
322	Catalytic Asymmetric [8+2] Cycloaddition: Synthesis of Cycloheptatrieneâ€Fused Pyrrole Derivatives. Angewandte Chemie - International Edition, 2013, 52, 5604-5607.	7.2	87
323	Catalytic asymmetric cross-dehydrogenative coupling: activation of C–H bonds by a cooperative bimetallic catalyst system. Chemical Communications, 2013, 49, 3470.	2.2	53
324	Iron-catalyzed asymmetric haloamination reactions. Chemical Communications, 2013, 49, 8054.	2.2	69

#	Article	IF	CITATIONS
325	Catalytic Asymmetric Homologation of αâ€Ketoesters with αâ€Diazoesters: Synthesis of Succinate Derivatives with Chiral Quaternary Centers. Angewandte Chemie - International Edition, 2013, 52, 10883-10886.	7.2	63
326	<i>N,N′</i> àêĐioxide–Scandium(III)â€Catalyzed Asymmetric Michael Addition of β,γâ€Unsaturated Butenol α,βâ€Unsaturated γâ€Keto Esters. Advanced Synthesis and Catalysis, 2013, 355, 2764-2768.	ides to 2.1	53
327	Chiral Scandium(III)â€Catalyzed Enantioselective αâ€Arylation of Nâ€Unprotected 3â€Substituted Oxindoles with Diaryliodonium Salts. Angewandte Chemie - International Edition, 2013, 52, 10245-10249.	7.2	91
328	Highly Stereoselective Conjugate Addition and αâ€Alkynylation Reaction with Electronâ€Deficient Alkynes Catalyzed by Chiral Scandium(III) Complexes. Chemistry - A European Journal, 2013, 19, 8591-8596.	1.7	32
329	Enantioselective Friedel–Crafts alkylation for synthesis of 2-substituted indole derivatives. Chemical Communications, 2013, 49, 11311.	2.2	73
330	Asymmetric Synthesis of βâ€Amino Nitriles through a Sc ^{III} â€Catalyzed Threeâ€Component Mannich Reaction of Silyl Ketene Imines. Angewandte Chemie - International Edition, 2013, 52, 3473-3477.	7.2	79
331	Enantioselective synthesis of 1,2,4-triazolines by chiral iron(ii)-complex catalyzed cyclization of \hat{l} ±-isocyano esters and azodicarboxylates. Chemical Communications, 2013, 49, 2572.	2.2	39
332	Nickel(II)â€Catalyzed Enantioselective 1,3â€Dipolar Cycloaddition of Azomethine Imines with Alkylidene Malonates. Chemistry - A European Journal, 2013, 19, 5134-5140.	1.7	77
333	Asymmetric Catalytic 1,3-Dipolar Cycloaddition Reaction of Nitrile Imines for the Synthesis of Chiral Spiro-Pyrazoline-Oxindoles. Organic Letters, 2013, 15, 76-79.	2.4	104
334	Efficient Enantioselective Synthesis of Dihydropyrans Using a Chiral <i>N</i> , <i>N<</i>	2.4	28
335	Organocatalytic Oxyamination of Azlactones: Kinetic Resolution of Oxaziridines and Asymmetric Synthesis of Oxazolin-4-ones. Journal of the American Chemical Society, 2013, 135, 10026-10029.	6.6	121
336	<i>N,N′</i> â€Dioxideâ€Magnesium Ditriflate Complexâ€Catalyzed Asymmetric αâ€Hydroxylation of βâ€Keto and βâ€Keto Amides. Advanced Synthesis and Catalysis, 2013, 355, 1924-1930.	Esters 2.1	72
337	Chiralâ€Zn(NTf ₂) ₂ â€Complexâ€Catalyzed Diastereo―and Enantioselective Direct Conjugate Addition of Arylacetonitriles to Alkylidene Malonates. Chemistry - A European Journal, 2013, 19, 16424-16430.	1.7	18
338	Chiral <i>N</i> , <i>N′</i> êDioxide–Yttrium Triflate Complexes atalyzed Asymmetric Aldol Cyclization of αâ€Keto Esters with αâ€Isothiocyanato Imide. Advanced Synthesis and Catalysis, 2013, 355, 3253-3262.	2.1	18
339	Asymmetric 1,2-Reduction of Enones with Potassium Borohydride Catalyzed by Chiral <i>N,N</i> à€²-Dioxide–Scandium(III) Complexes. Organic Letters, 2012, 14, 5134-5137.	2.4	46
340	Chiral guanidine-catalyzed asymmetric direct vinylogous Michael reaction of \hat{l}_{\pm},\hat{l}^2 -unsaturated \hat{l}^3 -butyrolactams with alkylidene malonates. Chemical Communications, 2012, 48, 5040.	2.2	83
341	Asymmetric Synthesis of 2,3â€Dihydroquinolinâ€4â€one Derivatives Catalyzed by a Chiral Bisguanidium Salt. Chemistry - A European Journal, 2012, 18, 15922-15926.	1.7	44
342	Probing the Mechanism of the Asymmetric Aminolysis of <i>meso</i> à€Epoxides Catalyzed by a Prolineâ€Based <i>N</i> , <i>N′</i> àâ€Dioxideâ€Indium Tris(triflate) Complex. Advanced Synthesis and Catalysis, 2012, 354, 1509-1518.	, 2.1	16

#	Article	IF	Citations
343	Enantioselective Baeyer–Villiger Oxidation: Desymmetrization of Meso Cyclic Ketones and Kinetic Resolution of Racemic 2-Arylcyclohexanones. Journal of the American Chemical Society, 2012, 134, 17023-17026.	6.6	150
344	Completely OH-Selective FeCl ₃ -Catalyzed Prins Cyclization: Highly Stereoselective Synthesis of 4-OH-Tetrahydropyrans. Journal of the American Chemical Society, 2012, 134, 17564-17573.	6.6	85
345	Asymmetric catalytic epoxidation of \hat{l}_{\pm},\hat{l}^2 -unsaturated carbonyl compounds with hydrogen peroxide: Additive-free and wide substrate scope. Chemical Science, 2012, 3, 1996.	3.7	65
346	Catalytic Asymmetric Friedel–Crafts Reaction of Activated Phenols and 4â€Oxoâ€4â€arylbutenoates. Advanced Synthesis and Catalysis, 2012, 354, 2096-2100.	2.1	28
347	Highly <i>Z</i> â€Selective Asymmetric Conjugate Addition of Alkynones with Pyrazolâ€5â€ones Promoted by <i>N</i> , <i>N</i> ,ê000 Alkynones with Pyrazolâ€5â€ones Promoted by <i>N</i> ,601 Alkynones with Pyrazolâ€5â€ones Promoted by <i>N</i> ,702 Alkynones with Pyrazolâ€5â€ones Promoted by <i>N</i> ,703 Alkynones with Pyrazolâ€5â€ones Promoted by <i>N</i> ,704 Alkynones with Pyrazolâ€6â€ones Promoted by <i>N</i> ,704 Alkynones with Pyrazolâ€6â€ones Promoted by <i>N</i> ,704 Alkynones with Pyrazolâ€6â€ones Promo	7.2	105
348	A Catalytic Asymmetric Ringâ€Expansion Reaction of Isatins and αâ€Alkylâ€Î±â€Diazoesters: Highly Efficient Synthesis of Functionalized 2â€Quinolone Derivatives. Angewandte Chemie - International Edition, 2012, 51, 8644-8647.	7.2	120
349	Enantioselective Synthesis of βâ€Pyrazoleâ€Substituted Alcohols through an Asymmetric Ringâ€Opening Reaction of <i>meso</i> å€Epoxides. Chemistry - A European Journal, 2012, 18, 3473-3477.	1.7	30
350	Recent progress in enantioselective synthesis of C3-functionalized oxindoles: rare earth metals take action. Chemical Science, 2012, 3, 327-334.	3.7	401
351	ChiralN,N'-Dioxide-Ni(II) Complex Catalyzed Asymmetric Carbonyl-Ene Reaction of Ethyl Trifluoropyruvate. Acta Chimica Sinica, 2012, 70, 1785.	0.5	64
352	Catalytic Asymmetric Vinylogous Mannich-type (AVM) Reaction of Nonactivated \hat{l}_{\pm} -Angelica Lactone. Organic Letters, 2011, 13, 3056-3059.	2.4	113
353	Enantioselective aza-Michael reaction of hydrazide to chalcones through the nonactivated amine moiety conjugated addition. Chemical Communications, 2011, 47, 4016.	2.2	29
354	Asymmetric Synthesis of 3,4-Diaminochroman-2-ones Promoted by Guanidine and Bisguanidium Salt. Organic Letters, 2011, 13, 5060-5063.	2.4	98
355	Asymmetric \hat{l} ±-Amination of 4-Substituted Pyrazolones Catalyzed by a Chiral Gd(OTf) < sub>3 < $ \text{sub} $ < i>N,N \hat{a} - Dioxide Complex: Highly Enantioselective Synthesis of 4-Amino-5-pyrazolone Derivatives. Organic Letters, 2011, 13, 596-599.	2.4	116
356	Indium(III)-Catalyzed Asymmetric Hetero-Diels–Alder Reaction of Brassard-Type Diene with Aliphatic Aldehydes. Organic Letters, 2011, 13, 3868-3871.	2.4	54
357	Chiral <i>N</i> , <i>N</i> ,ê<2-Dioxides: New Ligands and Organocatalysts for Catalytic Asymmetric Reactions. Accounts of Chemical Research, 2011, 44, 574-587.	7.6	587
358	Highly Enantioselective Synthesis of Tetrahydroquinolines via Cobalt(II)-Catalyzed Tandem 1,5-Hydride Transfer/Cyclization. Organic Letters, 2011, 13, 600-603.	2.4	143
359	Catalytic Asymmetric Conjugate Allylation of Coumarins. Organic Letters, 2011, 13, 3814-3817.	2.4	71
360	Catalytic Asymmetric Chloroamination Reaction of \hat{l}_{\pm},\hat{l}^2 -Unsaturated \hat{l}^3 -Keto Esters and Chalcones. Journal of the American Chemical Society, 2011, 133, 5636-5639.	6.6	152

#	Article	IF	Citations
361	New Electrophilic Addition of α-Diazoesters with Ketones for Enantioselective C–N Bond Formation. Journal of the American Chemical Society, 2011, 133, 15268-15271.	6.6	116
362	Asymmetric Strecker Reactions. Chemical Reviews, 2011, 111, 6947-6983.	23.0	447
363	Efficient Asymmetric Synthesis of 4 <i>H</i> à€Chromene Derivatives through a Tandem Michael Additionâ€"Cyclization Reaction Catalyzed by a Salenâ€"Cobalt(II) Complex. European Journal of Organic Chemistry, 2011, 2011, 137-142.	1.2	57
364	Highly Enantioselective Direct Michael Addition of 1 <i>H</i> â€Benzotriazole to Chalcones Catalyzed by Sc(OTf) ₃ / <i>N</i> , <i>N</i> ′â€Dioxide Complex. European Journal of Organic Chemistry, 2011, 2039-2042.	1.2	22
365	Enantioselective Synthesis of 2â€Substitutedâ€1,5â€Benzodiazepines through Domino Reaction of <i>o</i> a€Phenylenediamine and Chalcone Derivatives. European Journal of Organic Chemistry, 2011, 2011, 5233-5236.	1.2	35
366	Catalytic Asymmetric Addition of Alkyl Enol Ethers to 1,2â€Dicarbonyl Compounds: Highly Enantioselective Synthesis of Substituted 3â€Alkylâ€3â€Hydroxyoxindoles. Angewandte Chemie - International Edition, 2011, 50, 2573-2577.	7.2	122
367	Highly Enantioselective Michael Addition of Pyrazolinâ€5â€ones Catalyzed by Chiral Metal/ <i>N</i> NN′â€Dioxide Complexes: Metalâ€Directed Switch in Enantioselectivity. Angewandte Chemie - International Edition, 2011, 50, 4928-4932.	7.2	139
368	Facile and Efficient Enantioselective Hydroxyamination Reaction: Synthesis of 3â€Hydroxyaminoâ€⊋â€Oxindoles Using Nitrosoarenes. Angewandte Chemie - International Edition, 2011, 50, 4684-4688.	7.2	147
369	Guanidine Organocatalyst for the Asymmetric Mannichâ€Type Reaction between αâ€Isothiocyanato Imide and Sulfonyl Imines. Chemistry - A European Journal, 2011, 17, 2583-2586.	1.7	62
370	Catalytic Asymmetric 1,3â€Dipolar Cycloaddition of Nitrones to Alkylidene Malonates: Highly Enantioselective Synthesis of Multisubstituted Isoxazolidines. Chemistry - A European Journal, 2011, 17, 5226-5229.	1.7	35
371	Asymmetric Cycloaddition of β,γâ€Unsaturated αâ€Ketoesters with Electronâ€Rich Alkenes Catalyzed by a Chira Er(OTf) < sub > 3 < sub > < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > n < i > N < i > N < i > n < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < i > N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N < N	1.7	66
372	Asymmetric Synthesis of Tetrahydroquinolines with Quaternary Stereocenters through the Povarov Reaction. Chemistry - A European Journal, 2011, 17, 13800-13805.	1.7	63
373	Asymmetric Iodoamination of Chalcones and 4â€Arylâ€4â€oxobutenoates Catalyzed by a Complex Based on Scandium(III) and a <i>N,N′â€</i> Dioxide Ligand. Chemistry - A European Journal, 2011, 17, 14916-14921.	1.7	82
374	N,Nâ \in 2-Dioxideâ \in "nickel(II) complex catalyzed asymmetric Michael addition of cyclic 1,3-dicarbonyl compounds to \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l} ±-ketoesters. Tetrahedron Letters, 2011, 52, 3433-3436.	0.7	52
375	Application of l-thiazolidine-4-carboxylic acid monolayer in electrochemical determination of copper(II). Science China Chemistry, 2010, 53, 257-262.	4.2	3
376	Theoretical Study on Heteroâ€Diels–Alder Reaction of Butadiene with Benzaldehyde Catalyzed by Chiral In ^{III} Complexes. European Journal of Organic Chemistry, 2010, 2010, 3867-3875.	1.2	6
377	Recent Progress in the Chemically Catalyzed Enantioselective Synthesis of Cyanohydrins. European Journal of Organic Chemistry, 2010, 2010, 4751-4769.	1.2	105
378	Highly Efficient Asymmetric Threeâ€Component Vinylogous Mannich Reaction Catalyzed by a Chiral Scandium(III)― <i>N</i> , <i>N</i> ,62â€Dioxide Complex. Advanced Synthesis and Catalysis, 2010, 352, 976-980.	2.1	35

#	Article	IF	CITATIONS
379	Highly Enantioselective Zinc atalyzed Friedel–Crafts Alkylation of Indoles with Ethyl Trifluoropyruvate. Advanced Synthesis and Catalysis, 2010, 352, 3174-3178.	2.1	31
380	Highly Enantioselective Synthesis of 3â€Aminoâ€2â€oxindole Derivatives: Catalytic Asymmetric αâ€Amination of 3â€Substituted 2â€Oxindoles with a Chiral Scandium Complex. Chemistry - A European Journal, 2010, 16, 6632-6637.	1.7	102
381	Asymmetric Conjugate Addition of Nitromethane to Enones Catalyzed by Chiral <i>N</i> , <i>N′</i> èa€Dioxide–Scandium(III) Complexes. Chemistry - A European Journal, 2010, 16, 7696-7699	1.7 ·	39
382	Highly Enantioselective Synthesis of αâ€Stereogenic Esters through Catalytic Asymmetric Michael Addition of 4â€Oxoâ€4â€arylbutenoates. Chemistry - A European Journal, 2010, 16, 10130-10136.	1.7	38
383	Asymmetric Diels–Alder and Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reactions of β,γâ€Unsaturate αâ€Ketoesters with Cyclopentadiene Catalyzed by <i>N</i> , <i>N</i> à€²â€Dioxide Copper(II) Complex. Chemistry A European Journal, 2010, 16, 11963-11968.	d 1. 7	55
384	Highly Enantioselective Conjugate Addition of Thioglycolate to Chalcones Catalyzed by Lanthanum: Low Catalyst Loading and Remarkable Chiral Amplification. Angewandte Chemie - International Edition, 2010, 49, 4290-4293.	7.2	93
385	Asymmetric Threeâ€Component Inverse Electronâ€Demand Azaâ€Diels–Alder Reaction: Efficient Synthesis of Ringâ€Fused Tetrahydroquinolines. Angewandte Chemie - International Edition, 2010, 49, 3799-3802.	7.2	194
386	Highly Enantioselective Insertion of Carbenoids into NH Bonds Catalyzed by Copper(I) Complexes of Binol Derivatives. Angewandte Chemie - International Edition, 2010, 49, 4763-4766.	7.2	110
387	Catalytic Asymmetric Bromoamination of Chalcones: Highly Efficient Synthesis of Chiral αâ€Bromoâ€Î²â€Amino Ketone Derivatives. Angewandte Chemie - International Edition, 2010, 49, 6160-6164.	7.2	180
388	N,N′-Dioxide–scandium(III) complex catalyzed highly enantioselective Friedel–Crafts alkylation of indole to alkylidene malonates. Tetrahedron, 2010, 66, 1447-1457.	1.0	32
389	Enantioselective aza-Diels–Alder reaction of Brassard's diene with aldimines catalyzed by chiral N,N′-dioxide–Yb(OTf)3 complex. Tetrahedron Letters, 2010, 51, 3088-3091.	0.7	27
390	Catalytic Asymmetric Roskamp Reaction of α-Alkyl-α-diazoesters with Aromatic Aldehydes: Highly Enantioselective Synthesis of α-Alkyl-β-keto Esters. Journal of the American Chemical Society, 2010, 132, 8532-8533.	6.6	166
391	AgAsF ₆ /Sm(OTf) ₃ Promoted Reversal of Enantioselectivity for the Asymmetric Friedelâ^'Crafts Alkylations of Indoles with β,γ-Unsaturated α-Ketoesters. Organic Letters, 2010, 12, 180-183.	2.4	94
392	Chiral Bisguanidine-Catalyzed Inverse-Electron-Demand Hetero-Dielsâ^Alder Reaction of Chalcones with Azlactones. Journal of the American Chemical Society, 2010, 132, 10650-10651.	6.6	177
393	Catalytic Asymmetric Synthesis of Quaternary α-Hydroxy Trifluoromethyl Phosphonate via Chiral Aluminum(III) Catalyzed Hydrophosphonylation of Trifluoromethyl Ketones. Organic Letters, 2010, 12, 4296-4299.	2.4	57
394	Asymmetric Cyanation of Activated Olefins with Ethyl Cyanoformate Catalyzed by a Modular Titanium Catalyst. Organic Letters, 2010, 12, 1280-1283.	2.4	77
395	Highly enantioselective synthesis of 1,3-bis(hydroxymethyl)-2-oxindoles from unprotected oxindoles and formalin using a chiral NdIII complex. Chemical Science, 2010, 1, 590.	3.7	58
396	Highly enantioselective aza-ene-type reaction catalyzed by chiral N,N′-dioxide-nickel(ii) complex. Chemical Communications, 2010, 46, 3771.	2.2	48

#	Article	IF	CITATIONS
397	Highly enantioselective Michael addition of malonates to \hat{l}^2 , \hat{l}^3 -unsaturated \hat{l}_\pm -ketoesters catalyzed by chiral N,Nâ \in 2-dioxide-Yttrium(iii) complexes with convenient procedure. Chemical Communications, 2010, 46, 3601.	2.2	39
398	Highly enantioselective α-chlorination of cyclic β-ketoesters catalyzed by N,N′-Dioxide using NCS as the chlorine source. Chemical Communications, 2010, 46, 1250.	2.2	67
399	Highly Efficient Synthesis of Quaternary αâ€Hydroxy Phosphonates <i>via</i> Lewis Acidâ€Catalyzed Hydrophosphonylation of Ketones. Advanced Synthesis and Catalysis, 2009, 351, 2567-2572.	2.1	65
400	Enantioselective Friedel–Crafts Alkylation of Indoles with Alkylidene Malonates Catalyzed by ⟨i⟩N,N′⟨ i⟩â€Dioxide–Scandium(III) Complexes: Asymmetric Synthesis of ⟨i⟩β⟨ i⟩â€Carbolines. Chemistry - European Journal, 2009, 15, 2055-2058.	A1.7	121
401	Asymmetric Hydrophosphonylation of αâ€Ketoesters Catalyzed by Cinchonaâ€Derived Thiourea Organocatalysts. Chemistry - A European Journal, 2009, 15, 589-592.	1.7	90
402	A <i>N,N′</i> àâ€Dioxide–Copper(II) Complex as an Efficient Catalyst for the Enantioselective and Diastereoselective Mannichâ€Type Reaction of Glycine Schiff Bases with Aldimines. Chemistry - A European Journal, 2009, 15, 3678-3681.	1.7	71
403	Highly Enantioselective Oneâ€Pot, Threeâ€Component Mannichâ€type Reaction Catalyzed by an <i>N</i> , <i>N</i> , 62ê€Dioxide–Scandium(III) Complex. Chemistry - A European Journal, 2009, 15, 5884-5887.	1.7	53
404	Highly Enantioselective Michael Addition of Malonate Derivatives to Enones Catalyzed by an⟨i⟩N⟨/i⟩,⟨i⟩N⟨/i⟩′â€Dioxide–Scandium(III) Complex. Chemistry - A European Journal, 2009, 15, 6807-6810). ^{1.7}	46
405	Organocatalytic Enantioselective Michael Addition of 4â€Hydroxycoumarin to α,βâ€Unsaturated Ketones: A Simple Synthesis of Warfarin. European Journal of Organic Chemistry, 2009, 2009, 5192-5197.	1.2	65
406	Bifunctional Guanidine via an Amino Amide Skeleton for Asymmetric Michael Reactions of βâ€Ketoesters with Nitroolefins: A Concise Synthesis of Bicyclic βâ€Amino Acids. Angewandte Chemie - International Edition, 2009, 48, 5195-5198.	7.2	169
407	Enantioselective Three-Component Kabachnikâ^'Fields Reaction Catalyzed by Chiral Scandium(III)â^' <i>N</i> , <i>N</i> , <i>N</i>)a€²-Dioxide Complexes. Organic Letters, 2009, 11, 1401-1404.	2.4	68
408	Highly enantioselective synthesis of tertiary alcohols: C2-symmetric N,N \hat{a} \in 2-dioxide-Sc(iii) complex promoted direct aldol reaction of \hat{l} ±-ketoesters and diazoacetate esters. Chemical Communications, 2009, , 7297.	2.2	44
409	Organocatalyzed highly stereoselective Michael addition of ketones to alkylidene malonates and nitroolefins using chiral primary-secondary diamine catalysts based on bispidine. Organic and Biomolecular Chemistry, 2009, 7, 4120.	1.5	67
410	Enantioselective Michael addition of malononitrile to chalcones catalyzed by a simple quinine $\hat{a} \in \text{``Al(OiPr)3'}$ complex: a simple method for the synthesis of a chiral 4H-pyran derivative. Chemical Communications, 2009, , 4711.	2,2	51
411	Amide-based bifunctional organocatalysts in asymmetric reactions. Chemical Communications, 2009, , 6145.	2.2	193
412	Direct Allylation of Aldimines Catalyzed by <i>C</i> ₂ â€Symmetric <i>N</i> , <i>N′</i> àêDioxide–Sc ^{lll} Complexes: Highly Enantioselective Synthesis of Homoallylic Amines. Chemistry - A European Journal, 2008, 14, 4796-4798.	1.7	70
413	An <i>N</i> , <i>N</i> ê²â€Dioxide/In(OTf) ₃ Catalyst for the Asymmetric Heteroâ€Diels–Alder Reaction Between Danishefsky's Dienes and Aldehydes: Application in the Total Synthesis of Triketide. Angewandte Chemie - International Edition, 2008, 47, 1308-1311.	7.2	136
414	Highly Enantioselective Direct Michael Addition of Nitroalkanes to Nitroolefins Catalyzed by La(OTf) ₃ / <i>N</i> N′â€Dioxide Complexes. Angewandte Chemie - International Edition, 2008, 47, 7079-7081.	7.2	77

#	Article	IF	CITATIONS
415	Asymmetric Intramolecular Oxaâ€Michael Addition of Activated α,βâ€Unsaturated Ketones Catalyzed by a Chiral <i>N</i> , <i>N</i> ,ê²â€Dioxide Nickel(II) Complex: Highly Enantioselective Synthesis of Flavanones. Angewandte Chemie - International Edition, 2008, 47, 8670-8673.	7.2	119
416	Highly Enantioselective Allylation of Aromatic αâ€Keto Phosphonates Catalyzed by Chiral <i>N,N′â€∢/i>Dioxideâ€Indium(III) Complexes. Advanced Synthesis and Catalysis, 2008, 350, 287-294.</i>	2.1	45
417	Asymmetric Ring Opening of <i>meso</i> àêEpoxides with Aromatic Amines Catalyzed by a New Prolineâ€Based <i>N</i> , <i>N′</i> â€Dioxideâ€Indium Tris(triflate) Complex. Advanced Synthesis and Catalysis, 2008, 350, 385-390.	2.1	59
418	Highly Efficient Amine Organocatalysts Based on Bispidine for the Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2008, 350, 2001-2006.	2.1	62
419	Chiral N,N′-dioxide-iron(II) complexes catalyzed enantioselective oxa-Michael addition of α,β-unsaturated aldehydes. Tetrahedron Letters, 2008, 49, 6663-6666.	0.7	24
420	Asymmetric Carbonyl-Ene Reaction Catalyzed by Chiral <i>N,N′</i> Pioxide-Nickel(II) Complex: Remarkably Broad Substrate Scope. Journal of the American Chemical Society, 2008, 130, 15770-15771.	6.6	117
421	Asymmetric Direct Aldol Reaction of Functionalized Ketones Catalyzed by Amine Organocatalysts Based on Bispidine. Journal of the American Chemical Society, 2008, 130, 5654-5655.	6.6	162
422	Enantioselective Aza-Dielsâ^'Alder Reaction of Aldimines with "Danishefsky-Type Diene―Catalyzed by Chiral Scandium(III)-N,Nâ€⁻-Dioxide Complexes. Journal of Organic Chemistry, 2008, 73, 630-637.	1.7	86
423	Enantioselective Allylation of Ketones Catalyzed by N,Nâ€~-Dioxide and Indium(III) Complex. Journal of Organic Chemistry, 2007, 72, 5227-5233.	1.7	90
424	Enantioselective Strecker Reaction of Phosphinoyl Ketoimines Catalyzed by in Situ Prepared ChiralN,Nâ€⁻-Dioxides. Journal of Organic Chemistry, 2007, 72, 204-208.	1.7	92
425	Highly Enantioselective Allylation of α-Ketoesters Catalyzed by <i>N</i> ,	1.7	63
426	Enantioselective Cyanosilylation of $\hat{l}\pm,\hat{l}\pm$ -Dialkoxy Ketones Catalyzed by Proline-Derived in-Situ-PreparedN-Oxide as Bifunctional Organocatalyst. Journal of Organic Chemistry, 2007, 72, 2374-2378.	1.7	86
427	A Chiral Functionalized Saltâ€Catalyzed Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2007, 349, 2156-2166.	2.1	65
428	Asymmetric Direct Aldol Reaction of αâ€Keto Esters and Acetone Catalyzed by Bifunctional Organocatalysts. Advanced Synthesis and Catalysis, 2007, 349, 2665-2668.	2.1	63
429	Highly Efficient Approach to 4-Ethoxy-5,6-dihydro-6,6-disubstituted Pyran-2-ones using a Combinational Lewis Acid-Base System. Advanced Synthesis and Catalysis, 2006, 348, 939-944.	2.1	6
430	Enantioselective Cyanosilylation of Ketones Catalyzed by a Nitrogen-Containing Bifunctional Catalyst. Advanced Synthesis and Catalysis, 2006, 348, 538-544.	2.1	74
431	Asymmetric Strecker Reaction of Ketoimines Catalyzed by a Novel Chiral BifunctionalN,N′-Dioxide. Advanced Synthesis and Catalysis, 2006, 348, 2579-2584.	2.1	81
432	A Mild and Efficient Asymmetric Hetero-Diels-Alder Reaction of the Brassard Diene with Aldehydes. European Journal of Organic Chemistry, 2005, 2005, 3542-3552.	1.2	45

#	Article	IF	CITATIONS
433	Catalytic Asymmetric Cyanosilylation of Ketones by a Chiral Amino Acid Salt. Journal of the American Chemical Society, 2005, 127, 12224-12225.	6.6	165
434	Asymmetric Cyanosilylation of Ketones Catalyzed by Bifunctional ChiralN-Oxide Titanium Complex Catalysts. European Journal of Organic Chemistry, 2004, 2004, 129-137.	1.2	64
435	Effective Activation of the Chiral Salen/Ti(OiPr)4 Catalyst with Achiral PhenolicN-Oxides as Additives in the Enantioselective Cyanosilylation of Ketones. European Journal of Organic Chemistry, 2004, 2004, 4657-4666.	1.2	46
436	Enantioselective Strecker Reactions between Aldimines and Trimethylsilyl Cyanide Promoted by ChiralN,N′-Dioxides. European Journal of Organic Chemistry, 2003, 2003, 3818-3826.	1.2	87
437	Catalytic Asymmetric Oxidation of Alkyl Aryl Sulfides Mediated by a Series of ChiralN-Alkyl-1,2-diphenylaminoethanol/Titanium/Water Complexes. Synthetic Communications, 2003, 33, 2793-2801.	1.1	9
438	Synthesis and crystal structure of bis[(4S,5S)-4,5-dihydro-4,5-diphenyl-2-(2′-oxidophenyl-χO)oxazole-χN]copper(II) and its application in the asymmetric Baeyer–Villiger reaction. Journal of Organometallic Chemistry, 2001, 619, 204-208.	0.8	34
439	Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic Câ^'H Alkylation via a Transient Chiral Nucleophile Strategy. Angewandte Chemie, 0, , .	1.6	10
440	Phenolic Hydroxylâ€Functionalized Covalent–Organic Frameworks for Formal [3+2] Reaction. Macromolecular Chemistry and Physics, 0, , 2100462.	1.1	0
441	Asymmetric Catalytic $(2+1)$ Cycloaddition of Thioketones to Synthesize Tetrasubstituted Thiiranes. Angewandte Chemie, $0, , .$	1.6	2
442	Photoinduced Chemoâ \in , Siteâ \in -and Stereoselective Î \pm â \in 'C(sp3)â-'H Functionalization of Sulfides. Angewandte Chemie, 0, , .	1.6	1
443	A nickel(<scp>ii</scp>)-catalyzed enantioselective all-carbon-based inverse-electron-demand Diels–Alder reaction of 2-pyrones with indenes. Organic Chemistry Frontiers, 0, , .	2.3	5