Frederic Lezot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/610031/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Growth factors, cytokines, and pediatric malignant primary bones tumors. , 2022, , 221-239.		Ο
2	Mammalian models of bone sarcomas. , 2022, , 27-34.		0
3	Inhibiting Endothelin Receptors with Macitentan Strengthens the Bone Protective Action of RANKL Inhibition and Reduces Metastatic Dissemination in Osteosarcoma. Cancers, 2022, 14, 1765.	3.7	3
4	The twin cytokines interleukin-34 and CSF-1: masterful conductors of macrophage homeostasis. Theranostics, 2021, 11, 1568-1593.	10.0	66
5	ICG-001, an Inhibitor of the Î ² -Catenin and cAMP Response Element-Binding Protein Dependent Gene Transcription, Decreases Proliferation but Enhances Migration of Osteosarcoma Cells. Pharmaceuticals, 2021, 14, 421.	3.8	8
6	Sonic Hedgehog Signature in Pediatric Primary Bone Tumors: Effects of the GLI Antagonist GANT61 on Ewing's Sarcoma Tumor Growth. Cancers, 2020, 12, 3438.	3.7	8
7	Ribosomopathies: New Therapeutic Perspectives. Cells, 2020, 9, 2080.	4.1	21
8	Origins of Alterations to Rankl Null Mutant Mouse Dental Root Development. International Journal of Molecular Sciences, 2020, 21, 2201.	4.1	4
9	Bisphosphonates in common pediatric and adult bone sarcomas. Bone, 2020, 139, 115523.	2.9	10
10	SHH Signaling Pathway Drives Pediatric Bone Sarcoma Progression. Cells, 2020, 9, 536.	4.1	17
11	Primary Retention of Molars and RANKL Signaling Alteration during Craniofacial Growth. Journal of Clinical Medicine, 2020, 9, 898.	2.4	3
12	Abstract B26: Prometastatic effect of ICG-001, a \hat{l}^2 -catenin/CBP dependent transcription inhibitor, in osteosarcoma. , 2020, , .		0
13	Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochemical Pharmacology, 2019, 168, 133-148.	4.4	8
14	Dormant, quiescent, tolerant and persister cells: Four synonyms for the same target in cancer. Biochemical Pharmacology, 2019, 162, 169-176.	4.4	147
15	The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cellular Immunology, 2019, 343, 103711.	3.0	161
16	Small animal models for the study of bone sarcoma pathogenesis:characteristics, therapeutic interests and limitations. Journal of Bone Oncology, 2018, 12, 7-13.	2.4	18
17	Paradoxical side effects of bisphosphonates on the skeleton: What do we know and what can we do?. Journal of Cellular Physiology, 2018, 233, 5696-5715.	4.1	41
18	Maternal RANKL Reduces the Osteopetrotic Phenotype of Null Mutant Mouse Pups. Journal of Clinical Medicine, 2018, 7, 426.	2.4	6

EDEDEDIC LEZO

2

FREDERIC LEZOT

#	Article	IF	CITATIONS
19	The Intrinsic and Extrinsic Implications of RANKL/RANK Signaling in Osteosarcoma: From Tumor Initiation to Lung Metastases. Cancers, 2018, 10, 398.	3.7	40
20	RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Frontiers in Physiology, 2017, 8, 338.	2.8	33
21	RANK–RANKL signalling in cancer. Bioscience Reports, 2016, 36, .	2.4	128
22	Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw. Journal of Cranio-Maxillo-Facial Surgery, 2016, 44, 1387-1394.	1.7	23
23	Abstract 4270: UMR957: a new osteogenic osteosarcoma cell-line derived from an osteoprotegerin null mutant mouse. , 2016, , .		0
24	Second permanent molars: embryological origin, development and eruption. Role of the RANK/RANKL/OPG pathway. Journal of Dentofacial Anomalies and Orthodontics, 2015, 18, 402.	0.0	0
25	Bone resorption: an actor of dental and periodontal development?. Frontiers in Physiology, 2015, 6, 319.	2.8	21
26	BYL719, a new αâ€specific PI3K inhibitor: Single administration and in combination with conventional chemotherapy for the treatment of osteosarcoma. International Journal of Cancer, 2015, 136, 784-796.	5.1	53
27	Skeletal consequences of RANKL-blocking antibody (IK22-5) injections during growth: Mouse strain disparities and synergic effect with zoledronic acid. Bone, 2015, 73, 51-59.	2.9	29
28	Homeobox genes from the Dlx family and bone cancers. , 2015, , 149-162.		0
29	Deuxièmes molaires permanentes : origine embryologique, développement et éruption. RÃ1e de la triade RANK/RANKL/OPG. Revue D'orthopedie Dento-faciale, 2015, 49, 207-216.	0.0	Ο
30	Abstract 3289: Skeletal consequences of bone resorption inhibitors (zoledronic acid and RANKL) Tj ETQq0 0 0 rg	;BT /Overlo	ock_10 Tf 50 3
31	Abstract 1439: RANK expression by osteosarcoma cells increases lung metastasis in Nude mouse while has no effect in immune-competent mouse. , 2015, , .		0
32	Preclinical evidence of potential craniofacial adverse effect of zoledronic acid in pediatric patients with bone malignancies. Bone, 2014, 68, 146-152.	2.9	25
33	Cephalometric assessment of craniofacial dysmorphologies in relation with Msx2 mutations in mouse. Orthodontics and Craniofacial Research, 2014, 17, 92-105.	2.8	13
34	Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages. Biomaterials, 2014, 35, 9660-9667.	11.4	133
35	Preclinical evidence of craniofacial adverse effect of zoledronic acid in newborn mice: Potential consequences in pediatric osteosarcoma and Ewing's sarcoma patients Journal of Clinical Oncology, 2014, 32, 10047-10047.	1.6	0
36	Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice. PLoS ONE, 2013, 8, e80054.	2.5	11

FREDERIC LEZOT

#	Article	IF	CITATIONS
37	RANKL Induces Organized Lymph Node Growth by Stromal Cell Proliferation. Journal of Immunology, 2012, 188, 1245-1254.	0.8	40
38	Proteoglycans and Osteolysis. Methods in Molecular Biology, 2012, 836, 323-337.	0.9	6
39	Bone resorption control of tooth eruption and root morphogenesis: Involvement of the receptor activator of NFâ€̂₽B (RANK). Journal of Cellular Physiology, 2011, 226, 74-85.	4.1	46
40	Receptor activator of NF-κB (RANK) stimulates the proliferation of epithelial cells of the epidermo-pilosebaceous unit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5342-5347.	7.1	60
41	Osteoclasts in the Dental Microenvironment: A Delicate Balance Controls Dental Histogenesis. Cells Tissues Organs, 2011, 194, 238-243.	2.3	10
42	Dlx homeobox gene family expression in osteoclasts. Journal of Cellular Physiology, 2010, 223, 779-787.	4.1	17
43	Facts and Hypothesis on Osteolytic Lesions Related to Normal and Tumoral Epithelial Dental Cell Differentiation. , 2010, , 77-96.		0
44	Physiopathology of Dental Rickets in Vitamin D Receptor-ablated Mice. Journal of Dental Research, 2010, 89, 1427-1432.	5.2	26
45	Enamel Protein Regulation and Dental and Periodontal Physiopathology in Msx2 Mutant Mice. American Journal of Pathology, 2010, 177, 2516-2526.	3.8	37
46	Differential Impact of Msx1 and Msx2 Homeogenes on Mouse Maxillofacial Skeleton. Cells Tissues Organs, 2009, 189, 126-132.	2.3	17
47	Dental and periodontal osteopetrosis phenotype in Msx2-/-transgenic mice. Bone, 2009, 44, S293-S294.	2.9	0
48	Rank over-expression impact onto tooth and alveolar bone complex growth. Bone, 2009, 44, S327-S328.	2.9	0
49	Physiological implications of DLX homeoproteins in enamel formation. Journal of Cellular Physiology, 2008, 216, 688-697.	4.1	52
50	Nasal inverted papilloma expresses the muscle segment homeobox gene Msx2: possible prognostic implications. Human Pathology, 2008, 39, 350-358.	2.0	7
51	Msx2 â^'/â^' transgenic mice develop compound amelogenesis imperfecta, dentinogenesis imperfecta and periodental osteopetrosis. Bone, 2007, 41, 851-859.	2.9	75
52	Vitamin D and tissue non-specific alkaline phosphatase in dental cells. European Journal of Oral Sciences, 2006, 114, 178-182.	1.5	14
53	Dento-alveolar Bone Complex and Vitamin D. , 2005, , 599-607.		14
54	Expression and regulation of the Msx1 natural antisense transcript during development. Nucleic Acids Research, 2005, 33, 5208-5218.	14.5	50

FREDERIC LEZOT

#	Article	IF	CITATIONS
55	Expression pattern of Dlx3 during cell differentiation in mineralized tissues. Bone, 2005, 37, 799-809.	2.9	56
56	Does Vitamin D play a role on Msx1 homeoprotein expression involving an endogenous antisense mRNA?. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 413-417.	2.5	8
57	Dental alveolar bone defects related to Vitamin D and calcium status. Journal of Steroid Biochemistry and Molecular Biology, 2004, 89-90, 615-618.	2.5	23
58	Cross-Talk Between Msx/Dlx Homeobox Genes and Vitamin D During Tooth Mineralization. Connective Tissue Research, 2002, 43, 509-514.	2.3	30
59	Msx1 Is a Regulator of Bone Formation During Development and Postnatal Growth: In Vivo Investigations in a Transgenic Mouse Model. Connective Tissue Research, 2002, 43, 153-160.	2.3	45
60	Msx1 Homeogene Antisense mRNA in Mouse Dental and Bone Cells. Connective Tissue Research, 2002, 43, 148-152.	2.3	19
61	Endogenous <i>Msx1</i> antisense transcript: <i>In vivo</i> and <i>in vitro</i> evidences, structure, and potential involvement in skeleton development in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7336-7341.	7.1	111
62	Evidence for regulation of amelogenin gene expression by 1,25-dihydroxyvitamin D3 in vivo. Journal of Cellular Biochemistry, 2000, 76, 194-205.	2.6	27
63	Epithelial Dlx-2 Homeogene Expression and Cementogenesis. Journal of Histochemistry and Cytochemistry, 2000, 48, 277-283.	2.5	47
64	Biomineralization, Life-Time of Odontogenic Cells and Differential Expression of the Two Homeobox Genes <i>MSX-1</i> and <i>DLX-2</i> in Transgenic Mice. Journal of Bone and Mineral Research, 2000, 15, 430-441.	2.8	33
65	Differential Expression and Activity of Tissue-nonspecific Alkaline Phosphatase (TNAP) in Rat Odontogenic Cells In Vivo. Journal of Histochemistry and Cytochemistry, 1999, 47, 1541-1552.	2.5	44
66	RANK/RANKL Axis in Melanoma. , 0, , .		0
67	New PI3K[alpha]-specific inhibitor, BYL719: therapeutic interest in osteosarcoma. Bone Abstracts, 0, , .	0.0	0
68	Craniofacial consequences of high-dose zoledronic acid injections in onco-pediatric patients. Bone Abstracts, 0, , .	0.0	0