
Mario Herrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6100200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet, The, 2019, 393, 447-492.	6.3	5,421
2	Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11645-11650.	3.3	1,709
3	Options for keeping the food system within environmental limits. Nature, 2018, 562, 519-525.	13.7	1,709
4	The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. Lancet, The, 2019, 393, 791-846.	6.3	1,638
5	Sustainable Intensification in Agriculture: Premises and Policies. Science, 2013, 341, 33-34.	6.0	1,233
6	Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20888-20893.	3.3	867
7	Climate variability and vulnerability to climate change: a review. Global Change Biology, 2014, 20, 3313-3328.	4.2	698
8	The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agricultural Systems, 2009, 101, 113-127.	3.2	668
9	Smart Investments in Sustainable Food Production: Revisiting Mixed Crop-Livestock Systems. Science, 2010, 327, 822-825.	6.0	633
10	The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change, 2017, 42, 251-267.	3.6	590
11	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461.	8.1	588
12	Adapting agriculture to climate change in Kenya: Household strategies and determinants. Journal of Environmental Management, 2013, 114, 26-35.	3.8	571
13	Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. Annual Review of Plant Biology, 2018, 69, 789-815.	8.6	559
14	A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8035-8040.	3.3	470
15	How much landâ€based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Global Change Biology, 2013, 19, 2285-2302.	4.2	454
16	Greenhouse gas emissions intensity of globalÂcroplands. Nature Climate Change, 2017, 7, 63-68.	8.1	414
17	Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.	13.7	413
18	Climate change mitigation through livestock system transitions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3709-3714.	3.3	407

#	Article	lF	CITATIONS
19	Mapping global cropland and field size. Global Change Biology, 2015, 21, 1980-1992.	4.2	404
20	Brief history of agricultural systems modeling. Agricultural Systems, 2017, 155, 240-254.	3.2	403
21	Communicating complexity: Integrated assessment of trade-offs concerning soil fertility management within African farming systems to support innovation and development. Agricultural Systems, 2011, 104, 191-203.	3.2	339
22	The roles of livestock in developing countries. Animal, 2013, 7, 3-18.	1.3	319
23	Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Animal Frontiers, 2013, 3, 6-13.	0.8	306
24	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	6.2	285
25	Livestock, livelihoods and the environment: understanding the trade-offs. Current Opinion in Environmental Sustainability, 2009, 1, 111-120.	3.1	281
26	Subnational distribution of average farm size and smallholder contributions to global food production. Environmental Research Letters, 2016, 11, 124010.	2.2	271
27	Farming and the geography of nutrient production for human use: a transdisciplinary analysis. Lancet Planetary Health, The, 2017, 1, e33-e42.	5.1	268
28	Reducing emissions from agriculture to meet the 2°C target. Global Change Biology, 2016, 22, 3859-3864.	4.2	267
29	Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 2017, 155, 269-288.	3.2	261
30	Sustaining intensification of smallholder livestock systems in the tropics. Livestock Science, 2010, 130, 95-109.	0.6	256
31	Livestock and global change: Emerging issues for sustainable food systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20878-20881.	3.3	256
32	Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 458-463.	3.3	248
33	Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19667-19672.	3.3	247
34	Climate change responses benefit from a global food system approach. Nature Food, 2020, 1, 94-97.	6.2	235
35	Livestock and the Environment: What Have We Learned in the Past Decade?. Annual Review of Environment and Resources, 2015, 40, 177-202.	5.6	223
36	Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3888-3892.	3.3	223

#	Article	IF	CITATIONS
37	Defining a land boundary for sustainable livestock consumption. Global Change Biology, 2018, 24, 4185-4194.	4.2	205
38	Climate change perception and adaptation of agro-pastoral communities in Kenya. Regional Environmental Change, 2012, 12, 791-802.	1.4	199
39	The potential of future foods for sustainable and healthy diets. Nature Sustainability, 2018, 1, 782-789.	11.5	197
40	The environmental costs and benefits of high-yield farming. Nature Sustainability, 2018, 1, 477-485.	11.5	193
41	Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7236-7241.	3.3	182
42	Mapping child growth failure in Africa between 2000 and 2015. Nature, 2018, 555, 41-47.	13.7	177
43	Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Security, 2021, 28, 100488.	4.0	177
44	Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planetary Health, The, 2019, 3, e318-e329.	5.1	176
45	Adapting to climate change: Agricultural system and household impacts in East Africa. Agricultural Systems, 2010, 103, 73-82.	3.2	172
46	Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nature Climate Change, 2015, 5, 830-836.	8.1	172
47	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	2.2	172
48	Challenges to scenario-guided adaptive action on food security under climate change. Global Environmental Change, 2014, 28, 383-394.	3.6	167
49	Assessing the land resource–food price nexus of the Sustainable Development Goals. Science Advances, 2016, 2, e1501499.	4.7	162
50	Food wedges: Framing the global food demand and supply challenge towards 2050. Global Food Security, 2014, 3, 125-132.	4.0	161
51	Integrated crop–livestock simulation models for scenario analysis and impact assessment. Agricultural Systems, 2001, 70, 581-602.	3.2	157
52	Increasing importance of precipitation variability on global livestock grazing lands. Nature Climate Change, 2018, 8, 214-218.	8.1	156
53	Agricultural productivity and greenhouse gas emissions: trade-offs or synergies between mitigation and food security?. Environmental Research Letters, 2013, 8, 035019.	2.2	144
54	Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planetary Health, The, 2021, 5, e50-e62.	5.1	135

#	Article	IF	CITATIONS
55	Agricultural diversification as an important strategy for achieving food security in Africa. Global Change Biology, 2018, 24, 3390-3400.	4.2	130
56	A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agricultural Systems, 2012, 111, 85-95.	3.2	124
57	Decoupling Livestock from Land Use through Industrial Feed Production Pathways. Environmental Science & Technology, 2018, 52, 7351-7359.	4.6	124
58	The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 2019, 58, 101944.	3.6	120
59	Climate change adaptation in mixed crop–livestock systems in developing countries. Global Food Security, 2014, 3, 99-107.	4.0	117
60	Livestock and greenhouse gas emissions: The importance of getting the numbers right. Animal Feed Science and Technology, 2011, 166-167, 779-782.	1.1	116
61	Spatially explicit estimates of N ₂ O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 2016, 22, 3383-3394.	4.2	112
62	Multiple cropping systems of the world and the potential for increasing cropping intensity. Global Environmental Change, 2020, 64, 102131.	3.6	112
63	Modelling the global economic consequences of a major African swine fever outbreak in China. Nature Food, 2020, 1, 221-228.	6.2	112
64	China's future food demand and its implications for trade and environment. Nature Sustainability, 2021, 4, 1042-1051.	11.5	112
65	Competing use of organic resources, village-level interactions between farm types and climate variability in a communal area of NE Zimbabwe. Agricultural Systems, 2011, 104, 175-190.	3.2	111
66	Climate change impacts on selected global rangeland ecosystem services. Global Change Biology, 2018, 24, 1382-1393.	4.2	111
67	Viewpoint: Rigorous monitoring is necessary to guide food system transformation in the countdown to the 2030 global goals. Food Policy, 2021, 104, 102163.	2.8	110
68	Beyond climate-smart agriculture: toward safe operating spaces for global food systems. Agriculture and Food Security, 2013, 2, .	1.6	109
69	Income growth and climate change effects on global nutrition security to mid-century. Nature Sustainability, 2018, 1, 773-781.	11.5	108
70	Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12, 118.	5.8	106
71	High carbon and biodiversity costs from converting Africa's wet savannahs to cropland. Nature Climate Change, 2015, 5, 481-486.	8.1	105
72	Transitions in agro-pastoralist systems of East Africa: Impacts on food security and poverty. Agriculture, Ecosystems and Environment, 2013, 179, 215-230.	2.5	104

#	Article	IF	CITATIONS
73	Improved global cropland data as an essential ingredient for food security. Global Food Security, 2015, 4, 37-45.	4.0	103
74	Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions. American Journal of Agricultural Economics, 2013, 95, 442-448.	2.4	102
75	Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agriculture, Ecosystems and Environment, 2008, 126, 122-137.	2.5	100
76	Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Global Environmental Change, 2014, 24, 165-182.	3.6	100
77	Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agricultural Systems, 2017, 155, 255-268.	3.2	99
78	Livestock policy for sustainable development. Nature Food, 2020, 1, 160-165.	6.2	97
79	A framework for priority-setting in climate smart agriculture research. Agricultural Systems, 2018, 167, 161-175.	3.2	95
80	Linking agricultural adaptation strategies, food security and vulnerability: evidence from West Africa. Regional Environmental Change, 2016, 16, 1305-1317.	1.4	93
81	Coping Strategies in Livestock-dependent Households in East and Southern Africa: A Synthesis of Four Case Studies. Human Ecology, 2007, 35, 461-476.	0.7	92
82	LivestockPlus - The sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands - Forrajes Tropicales, 2015, 3, 59.	0.1	92
83	The role of personal information sources on the decision-making process of Costa Rican dairy farmers. Agricultural Systems, 2003, 76, 3-18.	3.2	90
84	The role of trade in the greenhouse gas footprints of EU diets. Global Food Security, 2018, 19, 48-55.	4.0	89
85	Pathways for sustainable development of mixed crop livestock systems: Taking a livestock and pro-poor approach. Livestock Science, 2011, 139, 11-21.	0.6	87
86	Microbes and the Next Nitrogen Revolution. Environmental Science & Technology, 2017, 51, 7297-7303.	4.6	85
87	Bundling innovations to transform agri-food systems. Nature Sustainability, 2020, 3, 974-976.	11.5	85
88	Food Access Deficiencies in Sub-saharan Africa: Prevalence and Implications for Agricultural Interventions. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	85
89	Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture. Environmental Research Letters, 2015, 10, 094021.	2.2	84
90	Beyond resource constraints – Exploring the biophysical feasibility of options for the intensification of smallholder crop-livestock systems in Vihiga district, Kenya. Agricultural Systems, 2009, 101, 1-19.	3.2	83

#	Article	IF	CITATIONS
91	Reâ€framing the climate change debate in the livestock sector: mitigation and adaptation options. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 869-892.	3.6	83
92	Can agriculture support climate change adaptation, greenhouse gas mitigation and rural livelihoods? insights from Kenya. Climatic Change, 2013, 118, 151-165.	1.7	81
93	Opinion paper: The role of livestock in a sustainable diet: a land-use perspective. Animal, 2016, 10, 547-549.	1.3	80
94	A research vision for food systems in the 2020s: Defying the status quo. Clobal Food Security, 2020, 26, 100397.	4.0	78
95	Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature. Nature Communications, 2019, 10, 3420.	5.8	75
96	Bio-economic evaluation of farmers' perceptions of viable farms in western Kenya. Agricultural Systems, 2006, 90, 243-271.	3.2	73
97	Grazing systems expansion and intensification: Drivers, dynamics, and trade-offs. Global Food Security, 2018, 16, 93-105.	4.0	69
98	Assessing water resource use in livestock production: A review of methods. Livestock Science, 2016, 187, 68-79.	0.6	68
99	Targeting, out-scaling and prioritising climate-smart interventions in agricultural systems: Lessons from applying a generic framework to the livestock sector in sub-Saharan Africa. Agricultural Systems, 2017, 151, 153-162.	3.2	67
100	Modeling Extended Lactations of Dairy Cows. Journal of Dairy Science, 2000, 83, 1371-1380.	1.4	66
101	The Need for Improved Maps of Global Cropland. Eos, 2013, 94, 31-32.	0.1	66
102	Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resources Research, 2020, 56, e2019WR026995.	1.7	66
103	Clobal rangeland production systems and livelihoods at threat under climate change and variability. Environmental Research Letters, 2020, 15, 044021.	2.2	66
104	Increases in extreme heat stress in domesticated livestock species during the twentyâ€first century. Global Change Biology, 2021, 27, 5762-5772.	4.2	65
105	Climate change induced transformations of agricultural systems: insights from a global model. Environmental Research Letters, 2014, 9, 124018.	2.2	64
106	Identifying key entry-points for strategic management of smallholder farming systems in sub-Saharan Africa using the dynamic farm-scale simulation model NUANCES-FARMSIM. Agricultural Systems, 2009, 102, 89-101.	3.2	63
107	Integrating crops and livestock in subtropical agricultural systems. Journal of the Science of Food and Agriculture, 2012, 92, 1010-1015.	1.7	63
108	Intensification pathways for beef and dairy cattle production systems: Impacts on GHG emissions, land occupation and land use change. Agriculture, Ecosystems and Environment, 2017, 240, 135-147.	2.5	62

#	Article	IF	CITATIONS
109	Quantification of uncertainties in global grazing systems assessment. Global Biogeochemical Cycles, 2017, 31, 1089-1102.	1.9	62
110	Farm household models to analyse food security in a changing climate: A review. Global Food Security, 2014, 3, 77-84.	4.0	60
111	Effect of climate change, CO ₂ trends, nitrogen addition, and landâ€cover and management intensity changes on the carbon balance of European grasslands. Global Change Biology, 2016, 22, 338-350.	4.2	60
112	Bio-economic evaluation of dairy farm management scenarios using integrated simulation and multiple-criteria models. Agricultural Systems, 1999, 62, 169-188.	3.2	59
113	Comparison of Models for Describing the Lactation Curve of Latxa Sheep and an Analysis of Factors Affecting Milk Yield. Journal of Dairy Science, 2000, 83, 2709-2719.	1.4	59
114	Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet Planetary Health, The, 2022, 6, e192-e201.	5.1	59
115	Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa. Food Security, 2017, 9, 115-131.	2.4	58
116	Climate change and pastoralism: impacts, consequences and adaptation. OIE Revue Scientifique Et Technique, 2016, 35, 417-433.	0.5	58
117	Maasai perception of the impact and incidence of malignant catarrhal fever (MCF) in southern Kenya. Preventive Veterinary Medicine, 2007, 78, 296-316.	0.7	56
118	Derivation of a household-level vulnerability index for empirically testing measures of adaptive capacity and vulnerability. Regional Environmental Change, 2013, 13, 459-470.	1.4	56
119	Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture. Climatic Change, 2013, 117, 677-690.	1.7	56
120	Income, consumer preferences, and the future of livestock-derived food demand. Global Environmental Change, 2021, 70, 102343.	3.6	56
121	Structural change as a key component for agricultural non-CO2 mitigation efforts. Nature Communications, 2018, 9, 1060.	5.8	52
122	New feed sources key to ambitious climate targets. Carbon Balance and Management, 2015, 10, 26.	1.4	51
123	Seasonality constraints to livestock grazing intensity. Global Change Biology, 2017, 23, 1636-1647.	4.2	51
124	Characterising objective profiles of Costa Rican dairy farmers. Agricultural Systems, 2001, 67, 153-179.	3.2	49
125	Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya. Animal, 2009, 3, 1044-1056.	1.3	49
126	Closing system-wide yield gaps to increase food production and mitigate GHGs among mixed crop–livestock smallholders in Sub-Saharan Africa. Agricultural Systems, 2016, 143, 106-113.	3.2	49

#	Article	IF	CITATIONS
127	Climate change and variability impacts on grazing herds: Insights from a system dynamics approach for semiâ€arid Australian rangelands. Global Change Biology, 2019, 25, 3091-3109.	4.2	49
128	How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200452.	1.6	49
129	IMPACT: Generic household-level databases and diagnostics tools for integrated crop-livestock systems analysis. Agricultural Systems, 2007, 92, 240-265.	3.2	48
130	Five priorities to operationalize the EAT–Lancet Commission report. Nature Food, 2020, 1, 457-459.	6.2	47
131	The influence of diet of the donor animal on the initial bacterial concentration of ruminal fluid and in vitro gas production degradability parameters. Animal Feed Science and Technology, 2000, 87, 231-239.	1.1	46
132	Agricultural intensification scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante impacts and trade-offs. Agricultural Systems, 2018, 163, 16-26.	3.2	45
133	The Inter-Linkages Between Rapid Growth In Livestock Production, Climate Change, And The Impacts On Water Resources, Land Use, And Deforestation. Policy Research Working Papers, 2010, , .	1.4	45
134	Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach. Agricultural Systems, 2017, 151, 204-216.	3.2	44
135	Circularity in animal production requires a change in the EAT-Lancet diet in Europe. Nature Food, 2022, 3, 66-73.	6.2	44
136	Relationships between management intensity and structural and social variables in dairy and dual-purpose systems in Santa Cruz, Bolivia. Agricultural Systems, 2000, 65, 159-177.	3.2	42
137	Using farmer decision-making profiles and managerial capacity as predictors of farm management and performance in Costa Rican dairy farms. Agricultural Systems, 2006, 88, 395-428.	3.2	42
138	Yield gap analyses to estimate attainable bovine milk yields and evaluate options to increase production in Ethiopia and India. Agricultural Systems, 2017, 155, 43-51.	3.2	42
139	Pathways to carbon-neutrality for the Australian red meat sector. Agricultural Systems, 2019, 175, 13-21.	3.2	42
140	Historical trade-offs of livestock's environmental impacts. Environmental Research Letters, 2015, 10, 125013.	2.2	41
141	Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agricultural Systems, 2017, 151, 217-224.	3.2	41
142	Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of the Total Environment, 2018, 644, 1525-1530.	3.9	39
143	MAKING THE MOST OF IMPERFECT DATA: A CRITICAL EVALUATION OF STANDARD INFORMATION COLLECTED IN FARM HOUSEHOLD SURVEYS. Experimental Agriculture, 2019, 55, 230-250.	0.4	39
144	The Key Role of Production Efficiency Changes in Livestock Methane Emission Mitigation. AGU Advances, 2021, 2, e2021AV000391.	2.3	39

Mario Herrero

#	Article	IF	CITATIONS
145	Measurements of physical strength and their relationship to the chemical composition of four species of Brachiaria. Animal Feed Science and Technology, 2001, 92, 149-158.	1.1	38
146	Carbon sequestration and farm income in West Africa: Identifying best management practices for smallholder agricultural systems in northern Ghana. Ecological Economics, 2008, 67, 492-502.	2.9	38
147	Challenges and opportunities for improving eco-efficiency of tropical forage-based systems to mitigate greenhouse gas emissions. Tropical Grasslands - Forrajes Tropicales, 2013, 1, 156.	0.1	37
148	Roll-out of the Global Burden of Animal Diseases programme. Lancet, The, 2021, 397, 1045-1046.	6.3	36
149	The environmental costs and benefits of high-yield farming. Nature Sustainability, 2018, 1, 477-485.	11.5	36
150	Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management. Biogeosciences, 2016, 13, 3757-3776.	1.3	34
151	Economic values for production and functional traits in Holstein cattle of Costa Rica. Livestock Science, 2002, 75, 101-116.	1.2	33
152	India has natural resource capacity to achieve nutrition security, reduce health risks and improve environmental sustainability. Nature Food, 2020, 1, 631-639.	6.2	32
153	Prediction of the in vitro gas production and chemical composition of kikuyu grass by near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 1996, 60, 51-67.	1.1	30
154	Policies in support of pastoralism and biodiversity in the heterogeneous drylands of East Africa. Pastoralism, 2012, 2, 14.	0.3	29
155	Reducing uncertainty in nitrogen budgets for African livestock systems. Environmental Research Letters, 2014, 9, 105008.	2.2	29
156	Hotspots of gross emissions from the land use sector: patterns, uncertainties, and leading emission sources for the period 2000–2005 in the tropics. Biogeosciences, 2016, 13, 4253-4269.	1.3	29
157	Livestock wealth and social capital as insurance against climate risk: A case study of Samburu County in Kenya. Agricultural Systems, 2016, 146, 44-54.	3.2	29
158	Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 2020, 161, 385-391.	1.7	29
159	Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterisation. Agricultural Systems, 2000, 65, 73-97.	3.2	28
160	The future of human behaviour research. Nature Human Behaviour, 2022, 6, 15-24.	6.2	28
161	An integrated evaluation of strategies for enhancing productivity and profitability of resource-constrained smallholder farms in Zimbabwe. Agricultural Systems, 2009, 101, 57-68.	3.2	27
162	The Role of Healthy Diets in Environmentally Sustainable Food Systems. Food and Nutrition Bulletin, 2020, 41, 31S-58S.	0.5	27

#	Article	IF	CITATIONS
163	Global trends in grassland carrying capacity and relative stocking density of livestock. Global Change Biology, 2022, 28, 3902-3919.	4.2	27
164	A Decision Support System for smallholder campesino maize–cattle production systems of the Toluca Valley in Central Mexico. Part I—Integrating biological and socio-economic models into a holistic system. Agricultural Systems, 2003, 75, 1-21.	3.2	26
165	What can COVID-19 teach us about responding to climate change?. Lancet Planetary Health, The, 2020, 4, e174.	5.1	26
166	Livestock Water Use and Productivity in the Nile Basin. Ecosystems, 2010, 13, 205-221.	1.6	25
167	The evolution and evaluation of dairy cattle models for predicting milk production: an agricultural model intercomparison and improvement project (AgMIP) for livestock. Animal Production Science, 2014, 54, 2052.	0.6	25
168	Livelihoods and food security in an urban linked, high potential region of Tanzania: Changes over a three year period. Agricultural Systems, 2018, 160, 87-95.	3.2	24
169	Perspective article: Actions to reconfigure food systems. Global Food Security, 2020, 26, 100432.	4.0	24
170	Identifying recommendation domains for targeting dual-purpose maize-based interventions in crop-livestock systems in East Africa. Land Use Policy, 2013, 30, 834-846.	2.5	23
171	Integrating livestock feeds and production systems into agricultural multi-market models: The example of IMPACT. Food Policy, 2014, 49, 365-377.	2.8	23
172	The economic potential of residue management and fertilizer use to address climate change impacts on mixed smallholder farmers in Burkina Faso. Agricultural Systems, 2018, 167, 195-205.	3.2	23
173	Closing yield gaps in smallholder goat production systems in Ethiopia and India. Livestock Science, 2018, 214, 238-244.	0.6	22
174	The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa. Climatic Change, 2020, 162, 1213-1229.	1.7	22
175	Improved feeding and forages at a crossroads: Farming systems approaches for sustainable livestock development in East Africa. Outlook on Agriculture, 2020, 49, 13-20.	1.8	21
176	Shearing strength as an additional selection criterion for quality in Brachiaria pasture ecotypes. Journal of Agricultural Science, 2000, 135, 123-130.	0.6	20
177	The power and pain of market-based carbon policies: a global application to greenhouse gases from ruminant livestock production. Mitigation and Adaptation Strategies for Global Change, 2018, 23, 349-369.	1.0	20
178	The market impacts of shortening feed supply chains in Europe. Food Security, 2018, 10, 1401-1410.	2.4	20
179	The impact of nutrient-rich food choices on agricultural water-use efficiency. Nature Sustainability, 2019, 2, 233-241.	11.5	20
180	Prediction of the in vitro gas production dynamics of kikuyu grass by near-infrared reflectance spectroscopy using spectrally-structured sample populations. Animal Feed Science and Technology, 1997, 69, 281-287.	1.1	19

#	Article	IF	CITATIONS
181	Continuity and change in the contemporary Pacific food system. Global Food Security, 2022, 32, 100608.	4.0	19
182	Perceived effects of COVID-19 restrictions on smallholder farmers: Evidence from seven lower- and middle-income countries. Agricultural Systems, 2022, 198, 103367.	3.2	19
183	The effect of fermentable nitrogen availability on in vitro gas production and degradability of NDF. Animal Feed Science and Technology, 2000, 87, 241-251.	1.1	18
184	Freshwater use in livestock production—To be used for food crops or livestock feed?. Agricultural Systems, 2017, 155, 1-8.	3.2	18
185	Ecoregional Research for Development. Advances in Agronomy, 2007, 93, 257-311.	2.4	17
186	COVID-19 pandemic lessons for agri-food systems innovation. Environmental Research Letters, 2021, 16, 101001.	2.2	17
187	A Typology of Food Environments in the Pacific Region and Their Relationship to Diet Quality in Solomon Islands. Foods, 2021, 10, 2592.	1.9	17
188	Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 2. Model validation and analysis of management practices. Agricultural Systems, 2000, 65, 99-111.	3.2	16
189	Community-based interventions for the use and conservation of animal genetic resources: the case of indigenous scavenger chicken production in Benin. Tropical Animal Health and Production, 2011, 43, 961-966.	0.5	15
190	Increasing water productivity in agriculture , 2013, , 104-123.		15
191	The compatibility of circularity and national dietary recommendations for animal products in five European countries: a modelling analysis on nutritional feasibility, climate impact, and land use. Lancet Planetary Health, The, 2022, 6, e475-e483.	5.1	15
192	Livelihood Choices and Returns among Pastoralists: Evidence from Southern Kenya. Nomadic Peoples, 2007, 11, 31-55.	0.2	14
193	Sustaining healthy diets in times of change: linking climate hazards, food systems and nutrition security in rural communities of the Fiji Islands. Regional Environmental Change, 2020, 20, 1.	1.4	14
194	Farm intensification and drivers of technology adoption in mixed dairy-crop systems in Santa Cruz, Bolivia. Spanish Journal of Agricultural Research, 2008, 6, 279.	0.3	14
195	The benefits and trade-offs of agricultural diversity for food security in low- and middle-income countries: A review of existing knowledge and evidence. Global Food Security, 2022, 33, 100645.	4.0	14
196	Interactions between optimal replacement policies and feeding strategies in dairy herds. Livestock Science, 2001, 69, 17-31.	1.2	13
197	A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in Developing Countries. Natural Resource Management and Policy, 2018, , 385-423.	0.1	13
198	Who makes farming decisions? A study of Costa Rican dairy farmers. Agricultural Systems, 2001, 67, 181-199.	3.2	12

#	Article	IF	CITATIONS
199	A Decision Support System for smallholder campesino maize–cattle production systems of the Toluca Valley in Central Mexico. Part II—Emulating the farming system. Agricultural Systems, 2003, 75, 23-46.	3.2	12
200	Biomass in crop-livestock systems in the context of the livestock revolution. Sécheresse, 2013, 24, 330-339.	0.1	12
201	Private farmers' compensation and viability of protected areas: the case of Nairobi National Park and Kitengela dispersal corridor. International Journal of Sustainable Development and World Ecology, 2012, 19, 34-43.	3.2	11
202	All hat and no cattle: Accountability following the UN food systems summit. Global Food Security, 2021, 30, 100569.	4.0	11
203	Dielectric 5-branes and giant gravitons in ABJM. Journal of High Energy Physics, 2011, 2011, 1.	1.6	10
204	Towards environmentally sound intensification pathways for dairy development in the Tanga region of Tanzania. Regional Environmental Change, 2020, 20, 1.	1.4	10
205	Viewpoint: Aligning vision and reality in publicly funded agricultural research for development: A case study of CGIAR. Food Policy, 2022, 107, 102196.	2.8	7
206	Modelling fermentation in an in vitro gas production system: effects of microbial activity. BSAP Occasional Publication, 1998, 22, 81-84.	0.0	6
207	Estimation of methane emissions from local and crossbreed beef cattle in Daklak province of Vietnam. Asian-Australasian Journal of Animal Sciences, 2017, 30, 1054-1060.	2.4	6
208	Use of Visual Material for Eliciting Shepherds' Perceptions of Grassland in Highland Peru. Mountain Research and Development, 2007, 27, 146-152.	0.4	5
209	Methods in the Analysis of Maasai Livelihoods. Studies in Human Ecology and Adaptation, 2009, , 43-67.	0.6	5
210	Effect of frequency of ovine ruminal sampling on microbial activity and substrate fermentation. Proceedings of the British Society of Animal Science, 1999, 1999, 154-154.	0.0	4
211	GOBLET: An open-source geographic overlaying database and query module for spatial targeting in agricultural systems. Computers and Electronics in Agriculture, 2009, 68, 114-128.	3.7	4
212	Household-oriented benefits largely outweigh commercial benefits derived from cattle in Mabalane District, Mozambique. Rangeland Journal, 2018, 40, 565.	0.4	3
213	The role of systems research in grazing management: applications to sustainable cattle production in Latin America. Systems Approaches for Sustainable Agricultural Development, 1997, , 129-136.	0.2	3
214	Nutritional management of dual-purpose youngstock in Costa Rica 1. A dynamic characterisation of management intensity and productive orientation. Proceedings of the British Society of Animal Science, 1998, 1998, 82-82.	0.0	2
215	Integrating models of relative abundance of species with the dry-weight-rank method for the botanical analysis of forest understorey vegetation. Grass and Forage Science, 2002, 57, 171-183.	1.2	2
216	Seasonal differences in the metabolisable energy concentration of kikuyu grass as predicted from in vitro gas production measurements. Animal Research, 1995, 44, 46-46.	0.6	2

#	Article	IF	CITATIONS
217	Reply to Comment by Rigolot on "Narratives Behind Livestock Methane Mitigation Studies Matterâ€. AGU Advances, 2021, 2, e2021AV000549.	2.3	2
218	Socio-Technical Innovation Bundles for Agri-Food Systems Transformation. Sustainable Development Goals Series, 2022, , 1-20.	0.2	2
219	A comparison of the gas production profiles of fresh and dry forage. Proceedings of the British Society of Animal Science, 1998, 1998, 62-62.	0.0	1
220	Broad-based calibrations of in vitro gas production of forages by near-infrared reflectance spectroscopy. BSAP Occasional Publication, 1998, 22, 234-237.	0.0	1
221	The rÃ1e of livestock in natural resources management. BSAP Occasional Publication, 1998, 21, 87-94.	0.0	1
222	Simulation of enteric methane emissions from individual beef cattle in tropical pastures of improving quality: a case study with the model RUMINANT. Advances in Animal Biosciences, 2016, 7, 233-234.	1.0	1
223	Drivers and challenges for food security , 2013, , 7-28.		1
224	Nutritional management of dual-purpose youngstock in Costa Rica 2. Pre-weaning growth performance. Proceedings of the British Society of Animal Science, 1998, 1998, 83-83.	0.0	0
225	Intake of lactating and dry dual-purpose cows grazing two species of Brachiaria pastures in Santa Cruz, Bolivia. Proceedings of the British Society of Animal Science, 2001, 2001, 103-103.	0.0	Ο
226	Cost of meat. New Scientist, 2011, 212, 39.	0.0	0
227	Altered grazing systems: pastoralism to conventional agriculture. , 2019, , 257-275.		0
228	Challenges to agroecosystem management , 2013, , 42-52.		0
229	The use and abuse of cereals, legumes and crop residues in rations for dairy cattle. Burleigh Dodds Series in Agricultural Science, 2017, , 273-294.	0.1	Ο
230	Nutritional management of dual-purpose youngstock in Costa Rica 1. A dynamic characterisation of management intensity and productive orientation. Proceedings of the British Society of Animal Science, 1998, 1998, 82-82.	0.0	0
231	Nutritional management of dual-purpose youngstock in Costa Rica 2. Pre-weaning growth performance. Proceedings of the British Society of Animal Science, 1998, 1998, 83-83.	0.0	О