Hui Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6100128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drought losses in China might double between the 1.5 °C and 2.0 °C warming. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10600-10605.	3.3	328
2	Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stochastic Environmental Research and Risk Assessment, 2010, 24, 349-358.	1.9	162
3	Tens of thousands additional deaths annually in cities of China between 1.5 °C and 2.0 °C warming. Nature Communications, 2019, 10, 3376.	5.8	105
4	Drought and wetness variability in the Tarim River Basin and connection to large-scale atmospheric circulation. International Journal of Climatology, 2014, 34, 2678-2684.	1.5	75
5	Projections of precipitation over China based on CMIP6 models. Stochastic Environmental Research and Risk Assessment, 2021, 35, 831-848.	1.9	62
6	Doubling of the population exposed to drought over South Asia: CMIP6 multi-model-based analysis. Science of the Total Environment, 2021, 771, 145186.	3.9	56
7	Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China. Water (Switzerland), 2016, 8, 221.	1.2	53
8	Influences of Climate Extremes on NDVI (Normalized Difference Vegetation Index) in the Poyang Lake Basin, China. Wetlands, 2015, 35, 1033-1042.	0.7	51
9	Impacts of 1.5â€ [°] °C and 2â€ [°] °C global warming on winter snow depth in Central Asia. Science of the Total Environment, 2019, 651, 2866-2873.	3.9	43
10	Projected changes in temperature, precipitation and potential evapotranspiration across Indus River Basin at 1.5–3.0 °C warming levels using CMIP6-GCMs. Science of the Total Environment, 2021, 789, 147867.	3.9	37
11	Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 ŰC and 2.0 ŰC in the Tarim River basin, China. Atmospheric Research, 2017, 196, 119-128.	1.8	29
12	Projections of actual evapotranspiration under the 1.5â€Â°C and 2.0â€Â°C global warming scenarios in sandy areas in northern China. Science of the Total Environment, 2018, 645, 1496-1508.	3.9	29
13	Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China. Frontiers of Earth Science, 2021, 15, 23-37.	0.9	27
14	Comparison of Changing Population Exposure to Droughts in River Basins of the Tarim and the Indus. Earth's Future, 2020, 8, e2019EF001448.	2.4	26
15	Moisture budget variations in the Yangtze River Basin, China, and possible associations with large-scale circulation. Stochastic Environmental Research and Risk Assessment, 2010, 24, 579-589.	1.9	24
16	Assessment of CMIP3 climate models and projected changes of precipitation and temperature in the Yangtze River Basin, China. Climatic Change, 2012, 111, 737-751.	1.7	23
17	Observed changes in maximum and minimum temperatures in Xinjiang autonomous region, China. International Journal of Climatology, 2017, 37, 5120-5128.	1.5	23
18	Hydrological extremes in the Aksu-Tarim River Basin: Climatology and regime shift. Climate Dynamics, 2016, 46, 2029-2037.	1.7	17

Ηυι ΤΑΟ

#	ARTICLE	IF	CITATIONS
19	Spatial and Temporal Variation Characteristics of Heatwaves in Recent Decades over China. Remote Sensing, 2021, 13, 3824.	1.8	15
20	Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water (Switzerland), 2022, 14, 861.	1.2	15
21	Simulated and projected climate extremes in the Tarim River Basin using the regional climate model CCLM. Stochastic Environmental Research and Risk Assessment, 2015, 29, 2061-2071.	1.9	14
22	Accessing the Difference in the Climate Elasticity of Runoff across the Poyang Lake Basin, China. Water (Switzerland), 2017, 9, 135.	1.2	14
23	Flood Hazard Assessment for the Tori Levee Breach of the Indus River Basin, Pakistan. Water (Switzerland), 2021, 13, 604.	1.2	13
24	Estimation of economic losses from tropical cyclones in China at 1.5 °C and 2.0 °C warming using the regional climate model COSMO LM. International Journal of Climatology, 2019, 39, 724-737.	1.5	12
25	Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China. Sustainability, 2019, 11, 4220.	1.6	9
26	Variation of Projected Atmospheric Water Vapor in Central Asia Using Multi-Models from CMIP6. Atmosphere, 2020, 11, 909.	1.0	7
27	Hydrological extremes in the Aksu-Tarim River Basin: Mid-latitude dynamics. Climate Dynamics, 2016, 46, 2039-2050.	1.7	5
28	Increasing urban and rural population exposures to warmâ€season concurrent hot days and nights on the North China Plain. International Journal of Climatology, 2022, 42, 7938-7950.	1.5	2
29	Variability and stability of water resource in the arid regions of China: a case study of the Tarim River basin. Frontiers of Earth Science, 2009, 3, 381-388.	0.5	1