
Mihail Eugen Hinescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6099913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell and Tissue Research, 2011, 345, 391-403.	2.9	186
2	The mechanism of cCMP-induced relaxation in vascular smooth muscle. European Journal of Pharmacology, 1985, 107, 393-394.	3.5	178
3	Telocytes in Human Term Placenta: Morphology and Phenotype. Cells Tissues Organs, 2010, 192, 325-339.	2.3	169
4	Interstitial cells of Cajal in pancreas. Journal of Cellular and Molecular Medicine, 2005, 9, 169-190.	3.6	159
5	Novel type of interstitial cell (Cajal-like) in human fallopian tube. Journal of Cellular and Molecular Medicine, 2005, 9, 479-523.	3.6	152
6	C-kit immunopositive interstitial cells (Cajal-type) in human myometrium. Journal of Cellular and Molecular Medicine, 2005, 9, 407-420.	3.6	137
7	Telocytes in human epicardium. Journal of Cellular and Molecular Medicine, 2010, 14, 2085-2093.	3.6	133
8	Oxidative Stress and the Microbiota-Gut-Brain Axis. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	4.0	133
9	Interstitial Cajalâ€like cells (ICLC) in atrial myocardium: ultrastructural and immunohistochemical characterization. Journal of Cellular and Molecular Medicine, 2006, 10, 243-257.	3.6	116
10	Cellular Players in Skeletal Muscle Regeneration. BioMed Research International, 2014, 2014, 1-21.	1.9	114
11	Interstitial Cajalâ€like cells (ICLC) in myocardial sleeves of human pulmonary veins. Journal of Cellular and Molecular Medicine, 2008, 12, 1777-1781.	3.6	107
12	Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC). Journal of Cellular and Molecular Medicine, 2006, 10, 429-458.	3.6	100
13	Interstitial Cajal-like cells in human gallbladder. Journal of Molecular Histology, 2007, 38, 275-284.	2.2	100
14	Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy. Cell and Tissue Research, 2011, 343, 389-397.	2.9	100
15	Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine, 2008, 12, 1795-1810.	3.6	99
16	Interstitial Cajal-like cells (ICLC) in human atrial myocardium. Journal of Cellular and Molecular Medicine, 2005, 9, 972-975.	3.6	97
17	Interstitial Cajalâ€like cells in rat mesentery: an ultrastructural and immunohistochemical approach. Journal of Cellular and Molecular Medicine, 2008, 12, 260-270.	3.6	70
18	Targeting CD36 as Biomarker for Metastasis Prognostic: How Far from Translation into Clinical Practice?. BioMed Research International, 2018, 2018, 1-12.	1.9	67

MIHAIL EUGEN HINESCU

#	Article	IF	CITATIONS
19	Caveolin-1 overexpression correlates with tumour progression markers in pancreatic ductal adenocarcinoma. Journal of Molecular Histology, 2009, 40, 23-29.	2.2	50
20	CD36 in Alzheimer's Disease: An Overview of Molecular Mechanisms and Therapeutic Targeting. Neuroscience, 2021, 453, 301-311.	2.3	47
21	Snapshots of mammary gland interstitial cells: methylene-blue vital staining and c-kit immunopositivity. Journal of Cellular and Molecular Medicine, 2005, 9, 476-477.	3.6	45
22	Redox Signaling in Diabetic Nephropathy: Hypertrophy versus Death Choices in Mesangial Cells and Podocytes. Mediators of Inflammation, 2015, 2015, 1-13.	3.0	44
23	Pancreatic Expression of DOG1. Applied Immunohistochemistry and Molecular Morphology, 2009, 17, 413-418.	1.2	39
24	Ageâ€related ultrastructural changes of the basement membrane in the mouse bloodâ€brain barrier. Journal of Cellular and Molecular Medicine, 2019, 23, 819-827.	3.6	37
25	Nitroglycerin stimulates the sarcolemmal Ca++-extrusion ATPase of coronary smooth muscle cells. Biochemical Pharmacology, 1985, 34, 1857-1860.	4.4	33
26	Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. OncoTargets and Therapy, 2014, 8, 81.	2.0	33
27	Skeletal muscle regeneration involves macrophage-myoblast bonding. Cell Adhesion and Migration, 2018, 12, 228-235.	2.7	32
28	Vaccine mRNA Can Be Detected in Blood at 15 Days Post-Vaccination. Biomedicines, 2022, 10, 1538.	3.2	27
29	Myocardial interstitial Cajalâ€like cells (ICLC) in caveolinâ€1 KO mice. Journal of Cellular and Molecular Medicine, 2009, 13, 202-206.	3.6	25
30	Inositol trisphosphate and the contraction of vascular smooth muscle cells. European Journal of Pharmacology, 1986, 123, 167-169.	3.5	24
31	Advances in Pancreatic Cancer Detection. Advances in Clinical Chemistry, 2010, 51, 145-180.	3.7	24
32	Acute simulated ischaemia produces both inhibition and activation of K+ currents in isolated ventricular myocytes. Cardiovascular Research, 1996, 32, 930-939.	3.8	23
33	Caveolin-1-Knockout Mouse as a Model of Inflammatory Diseases. Journal of Immunology Research, 2018, 2018, 1-10.	2.2	22
34	CD36 and CD97 in Pancreatic Cancer versus Other Malignancies. International Journal of Molecular Sciences, 2020, 21, 5656.	4.1	19
35	CD117/c-kit positive interstitial (Cajal-like) cells in human pancreas. Journal of Cellular and Molecular Medicine, 2005, 9, 738-739.	3.6	18
36	Ovarian adult stem cells: hope or pitfall?. Journal of Ovarian Research, 2014, 7, 71.	3.0	18

MIHAIL EUGEN HINESCU

#	Article	IF	CITATIONS
37	CD 36: Focus on Epigenetic and Post-Transcriptional Regulation. Frontiers in Genetics, 2019, 10, 680.	2.3	18
38	Caveolae as Potential Hijackable Gates in Cell Communication. Frontiers in Cell and Developmental Biology, 2020, 8, 581732.	3.7	17
39	CD36 – A novel molecular target in the neurovascular unit. European Journal of Neuroscience, 2021, 53, 2500-2510.	2.6	17
40	Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately?. International Journal of Molecular Sciences, 2022, 23, 604.	4.1	16
41	Heterocellular molecular contacts in the mammalian stem cell niche. European Journal of Cell Biology, 2018, 97, 442-461.	3.6	15
42	Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. Current Pharmaceutical Design, 2019, 24, 5268-5295.	1.9	15
43	Multiplex assay for multiomics advances in personalized-precision medicine. Journal of Immunoassay and Immunochemistry, 2019, 40, 3-25.	1.1	15
44	Macrophages and Stem Cells—Two to Tango for Tissue Repair?. Biomolecules, 2021, 11, 697.	4.0	14
45	Gene expression profile of adhesion and extracellular matrix molecules during early stages of skeletal muscle regeneration. Journal of Cellular and Molecular Medicine, 2020, 24, 10140-10150.	3.6	11
46	New molecular insights in diabetic nephropathy. International Urology and Nephrology, 2016, 48, 373-387.	1.4	9
47	Sea-Buckthorn Seed Oil Induces Proliferation of both Normal and Dysplastic Keratinocytes in Basal Conditions and under UVA Irradiation. Journal of Personalized Medicine, 2021, 11, 278.	2.5	9
48	Silicon micromachined sensor for gas detection. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 227-231.	3.5	8
49	A Fatty Acid Fraction Purified From Sea Buckthorn Seed Oil Has Regenerative Properties on Normal Skin Cells. Frontiers in Pharmacology, 2021, 12, 737571.	3.5	6
50	K+- Channel Openers Protect the Myocardium against Ischemia-Reperfusion Injury. Annals of the New York Academy of Sciences, 1994, 723, 398-400.	3.8	4
51	Cardiac apoptosis: from organ failure to allograft rejection. Journal of Cellular and Molecular Medicine, 2001, 5, 143-152.	3.6	4
52	The plasma membrane Ca++-extrusion pump of coronary artery smooth muscle is stimulated by nitroglycerin. Cell Calcium, 1984, 5, 291.	2.4	2
53	Phtalocyanine based integrated gas sensor. , 0, , .		1
54	Cell death in cell culture frame by frame: Spontaneous cell demise of a 3T3 fibroblast. Journal of Cellular and Molecular Medicine, 2003, 7, 192-193.	3.6	1

MIHAIL EUGEN HINESCU

#	Article	IF	CITATIONS
55	Authors? Comments. Journal of Cellular and Molecular Medicine, 2005, 9, 475-475.	3.6	1
56	Potential intracellular tracker capacity of novel synthetic metalloporphyrins. Toxicology Letters, 2011, 205, S61.	0.8	1
57	Low-Concentrations of Fatty Acids Induce an Early Increase in IL-8 Levels in Normal Human Astrocytes. Metabolites, 2022, 12, 329.	2.9	1
58	Signaling profile pathways involved in pancreatic cancer progression. European Journal of Cancer, Supplement, 2008, 6, 151.	2.2	0
59	Role of Apaf-1 and cathepsin B in pituitary tumor progression. Experimental and Clinical Endocrinology and Diabetes, 2008, 116, .	1.2	Ο
60	Fostering a concept: Why cell identity matters. , 2020, 1, 5-13.		0
61	Metastatic potential. , 2022, , 153-173.		Ο