Karl J Kunert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6099640/publications.pdf Version: 2024-02-01

KADI I KIINEDT

#	Article	IF	CITATIONS
1	Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2016, 2, 16112.	9.3	529
2	Drought Stress Responses in Soybean Roots and Nodules. Frontiers in Plant Science, 2016, 7, 1015.	3.6	152
3	Oryzacystatin I expression in transformed tobacco produces a conditional growth phenotype and enhances chilling tolerance. Plant Biotechnology Journal, 2003, 1, 101-112.	8.3	98
4	From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. Journal of Experimental Botany, 2015, 66, 137-146.	4.8	97
5	ls photosynthetic transcriptional regulation in Triticum aestivum L. cv. †TugelaDN' a contributing factor for tolerance to Diuraphis noxia (Homoptera: Aphididae)?. Plant Cell Reports, 2006, 25, 41-54.	5.6	76
6	Unlocking the potential of orphan legumes. Journal of Experimental Botany, 2017, 68, erw437.	4.8	69
7	Strigolactones positively regulate chilling tolerance in pea and in <scp><i>Arabidopsis</i></scp> . Plant, Cell and Environment, 2018, 41, 1298-1310.	5.7	69
8	Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (<i><scp>G</scp>lycine max</i>) and <i><scp>A</scp>rabidopsis thaliana</i> through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnology Journal, 2014, 12, 903-913.	8.3	61
9	Genomic changes associated with somaclonal variation in banana (Musa spp.). Physiologia Plantarum, 2007, 129, 766-774.	5.2	60
10	Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (<i>Glycine max</i>). Annals of Botany, 2015, 116, 497-510.	2.9	59
11	Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered, 2014, 5, 15-20.	3.2	55
12	A multicomponent, elicitorâ€inducible cystatin complex in tomato, Solanum lycopersicum. New Phytologist, 2007, 173, 841-851.	7.3	50
13	Potential use of phytocystatins in crop improvement, with a particular focus on legumes. Journal of Experimental Botany, 2015, 66, 3559-3570.	4.8	48
14	Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites. Plant Journal, 2006, 48, 403-413.	5.7	43
15	Review: The future of cystatin engineering. Plant Science, 2016, 246, 119-127.	3.6	42
16	Plant Vacuolar Processing Enzymes. Frontiers in Plant Science, 2019, 10, 479.	3.6	41
17	Enhancing faba bean (Vicia faba L.) genome resources. Journal of Experimental Botany, 2017, 68, 1941-1953.	4.8	37
18	Cysteine proteases and wheat (<scp><i>Triticum aestivum</i></scp> L) under drought: A still greatly unexplored association. Plant, Cell and Environment, 2017, 40, 1679-1690.	5.7	34

Karl J Kunert

#	Article	IF	CITATIONS
19	Regulation of Respiration and the Oxygen Diffusion Barrier in Soybean Protect Symbiotic Nitrogen Fixation from Chilling-Induced Inhibition and Shoots from Premature Senescence Â. Plant Physiology, 2008, 148, 316-327.	4.8	29
20	Expression of a Small Ubiquitin-Like Modifier Protease Increases Drought Tolerance in Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2019, 10, 266.	3.6	29
21	Use of Transgenic Oryzacystatin-I-Expressing Plants Enhances Recombinant Protein Production. Applied Biochemistry and Biotechnology, 2012, 168, 1608-1620.	2.9	28
22	Improvement of rhizobiumâ€soybean symbiosis and nitrogen fixation under drought. Food and Energy Security, 2020, 9, e177.	4.3	28
23	In search for drought-tolerant soybean: is the slow-wilting phenotype more than just a curiosity?. Journal of Experimental Botany, 2020, 71, 457-460.	4.8	24
24	Orphan Legumes Growing in Dry Environments: Marama Bean as a Case Study. Frontiers in Plant Science, 2018, 9, 1199.	3.6	23
25	Defining biotechnological solutions for insect control in sub‣aharan Africa. Food and Energy Security, 2020, 9, e191.	4.3	23
26	Deleterious effects of plant cystatins against the banana weevil <i>Cosmopolites sordidus</i> . Archives of Insect Biochemistry and Physiology, 2010, 73, 87-105.	1.5	21
27	Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency. Phytochemistry, 2015, 112, 179-187.	2.9	18
28	Development of marama bean, an orphan legume, as a crop. Food and Energy Security, 2019, 8, e00164.	4.3	14
29	Wheat Line "RYNO3936―Is Associated With Delayed Water Stress-Induced Leaf Senescence and Rapid Water-Deficit Stress Recovery. Frontiers in Plant Science, 2020, 11, 1053.	3.6	12
30	Drought and heat affect common bean minerals and human diet—What we know and where to go. Food and Energy Security, 2022, 11, .	4.3	12
31	Agroinfiltration contributes to VP1 recombinant protein degradation. Bioengineered, 2016, 7, 459-477.	3.2	10
32	Gibberellin Biosynthesis Inhibitors Help Control Plant Height for Improving Lodging Resistance in <i>E. Tef (Eragrostis tef)</i> . Journal of Crop Improvement, 2012, 26, 375-388.	1.7	9
33	The Cysteine Protease–Cysteine Protease Inhibitor System Explored in Soybean Nodule Development. Agronomy, 2013, 3, 550-570.	3.0	9
34	EMS Derived Wheat Mutant BIG8-1 (Triticum aestivum L.)—A New Drought Tolerant Mutant Wheat Line. International Journal of Molecular Sciences, 2021, 22, 5314.	4.1	9
35	Papain-like cysteine proteases are required for the regulation of photosynthetic gene expression and acclimation to high light stress. Journal of Experimental Botany, 2021, 72, 3441-3454.	4.8	8
36	Evaluation of four Mozambican cowpea landraces for drought tolerance. South African Journal of Plant and Soil, 2014, 31, 87-91.	1.1	7

KARL J KUNERT

#	Article	IF	CITATIONS
37	Role of fixing nitrogen in common bean growth under water deficit conditions. Food and Energy Security, 2020, 9, e183.	4.3	7
38	Factors facilitating sustainable scientific partnerships between developed and developing countries. Outlook on Agriculture, 2020, 49, 204-214.	3.4	7
39	Two Different Banana NPR1-Like Coding Sequences Confer Similar Protection Against Pathogens in Arabidopsis. Tropical Plant Biology, 2012, 5, 309-316.	1.9	5
40	Association of Nodule Performance Traits with Shoot Performance Traits of Common Bean Under Drought Stress. Journal of Crop Improvement, 2014, 28, 418-435.	1.7	3
41	Loop replacement design: a new way to improve potency of plant cystatins. FEBS Journal, 2022, , .	4.7	3
42	Redox metabolism in soybean and its significance in nitrogen-fixing nodules. Advances in Botanical Research, 2022, , 177-209.	1.1	3
43	Isolation, Characterization, and Expression of the Ricesd-1(GA20ox) Gene Ortholog inEragrostis tef. Journal of Crop Improvement, 2013, 27, 507-527.	1.7	0
44	Commentary: Extracellular peptidase hunting for improvement of protein production in plant cells and roots. Frontiers in Plant Science, 2015, 6, 557.	3.6	0