
Herbert M Urbassek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6099230/publications.pdf Version: 2024-02-01

HEDREDT M HDRASSER

#	Article	IF	CITATIONS
1	Metal ablation by picosecond laser pulses: A hybrid simulation. Physical Review B, 2002, 66, .	1.1	236
2	Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: A simulational study. Journal of Applied Physics, 2010, 107, .	1.1	132
3	A gas-flow model for the sputtering of condensed gases. Nuclear Instruments & Methods in Physics Research B, 1987, 22, 480-490.	0.6	130
4	Sputtering of Au (111) induced by 16-keV Au cluster bombardment: Spikes, craters, late emission, and fluctuations. Physical Review B, 2000, 62, 8487-8493.	1.1	127
5	Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids, 2015, 75, 58-75.	2.3	115
6	Molecular-dynamics simulation of sputtering. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 427-441.	0.6	110
7	Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions. Computational Materials Science, 2014, 90, 232-240.	1.4	110
8	Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals. Journal of the Mechanics and Physics of Solids, 2009, 57, 1514-1526.	2.3	108
9	Hydrodynamical instability of melt flow in laser cutting. Journal Physics D: Applied Physics, 1987, 20, 140-145.	1.3	102
10	Kinetic study of pulsed desorption flows into vacuum. Physical Review A, 1991, 43, 6722-6734.	1.0	100
11	Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 390-403.	2.6	98
12	On laser fusion cutting of metals. Journal Physics D: Applied Physics, 1987, 20, 481-488.	1.3	96
13	Polycrystalline iron under compression: Plasticity and phase transitions. Physical Review B, 2012, 86, .	1.1	96
14	Nanoindentation into a high-entropy alloy – An atomistic study. Journal of Alloys and Compounds, 2019, 803, 618-624.	2.8	93
15	Pressure-transmitting boundary conditions for molecular-dynamics simulations. Computational Materials Science, 2002, 24, 421-429.	1.4	85
16	Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold. Physical Review B, 2008, 78, .	1.1	85
17	Effect of gasâ€phase collisions in pulsedâ€laser desorption: A threeâ€dimensional Monte Carlo simulation study. Journal of Applied Physics, 1993, 73, 8544-8551.	1.1	84
18	Molecular Dynamics Simulation of Free and Forced BSA Adsorption on a Hydrophobic Graphite Surface. Langmuir, 2011, 27, 12938-12943.	1.6	83

#	Article	IF	CITATIONS
19	The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe. New Journal of Physics, 2009, 11, 103027.	1.2	81
20	Gas-phase segregation effects in pulsed laser desorption from binary targets. Physical Review Letters, 1993, 70, 1886-1889.	2.9	75
21	Spikes in condensed rare gases induced by keV-atom bombardment. Physical Review Letters, 1991, 67, 105-108.	2.9	73
22	Finite-Size Effects in Fe-Nanowire Solidâ^'Solid Phase Transitions: A Molecular Dynamics Approach. Nano Letters, 2009, 9, 2290-2294.	4.5	73
23	Contact Angle of Sessile Drops in Lennard-Jones Systems. Langmuir, 2014, 30, 13606-13614.	1.6	71
24	Molecularâ€dynamics simulations of bulk and surface damage production in lowâ€energy Cu→Cu bombardment. Journal of Applied Physics, 1992, 71, 5410-5418.	1.1	69
25	Nanoscratching of iron: A molecular dynamics study of the influence of surface orientation and scratching direction. Computational Materials Science, 2015, 103, 77-89.	1.4	69
26	Sputtering from spherical Au clusters by energetic atom bombardment. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 293-298.	0.6	68
27	Au sputtering by cluster bombardment: A molecular dynamics study. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 687-696.	0.6	67
28	Linearity and additivity in cluster-induced sputtering: A molecular-dynamics study of van der Waals bonded systems. Physical Review B, 2004, 70, .	1.1	65
29	Characterization of Fe potentials with respect to the stability of the bcc and fcc phase. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 035005.	0.8	65
30	Pair versus many-body potentials in atomic emission processes from a Cu surface. Nuclear Instruments & Methods in Physics Research B, 1992, 69, 232-241.	0.6	64
31	Molecular-dynamics simulation of adatom formation under keV-ion bombardment of Pt(111). Physical Review B, 1994, 50, 11167-11174.	1.1	64
32	Implantation and damage under low-energy Si self-bombardment. Physical Review B, 1998, 57, 4756-4763.	1.1	64
33	Sputtered cluster mass distributions, thermodynamic equilibrium and critical phenomena. Nuclear Instruments & Methods in Physics Research B, 1988, 31, 541-550.	0.6	63
34	Shock waves in polycrystalline iron: Plasticity and phase transitions. Physical Review B, 2014, 89, .	1.1	61
35	Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks. Nanotechnology, 2016, 27, 045706.	1.3	61
36	Atom ejection from a fast-ion track: A molecular-dynamics study. Physical Review B, 1994, 49, 786-795.	1.1	56

#	Article	IF	CITATIONS
37	Reflection coefficient of low-energy light ions. Physical Review B, 1991, 44, 7234-7242.	1.1	53
38	Sputtering of nanoparticles: Molecular dynamics study of Au impact on 20nm sized Au nanoparticles. International Journal of Mass Spectrometry, 2008, 272, 91-97.	0.7	53
39	Molecular-dynamics study of craters formed by energetic Cu cluster impact on Cu. Nuclear Instruments & Methods in Physics Research B, 2000, 164-165, 697-704.	0.6	52
40	Sputtering of Si nanospheres. Physical Review B, 2014, 90, .	1.1	51
41	Monte Carlo study of Knudsen layers in evaporation from elemental and binary media. Physics of Fluids A, Fluid Dynamics, 1993, 5, 243-256.	1.6	50
42	Model study of keV-ion mixing of metallic interfaces: Influence of materials properties and deposited energy. Physical Review B, 1995, 51, 14559-14569.	1.1	49
43	Molecular-dynamics investigation of the fcc→bcc phase transformation in Fe. Computational Materials Science, 2008, 41, 297-304.	1.4	49
44	Consequences of Hydrocarbon Contamination for Wettability and Protein Adsorption on Graphite Surfaces. Journal of Physical Chemistry C, 2015, 119, 12496-12501.	1.5	49
45	Atomistic Studies of Nanoindentation—A Review of Recent Advances. Crystals, 2017, 7, 293.	1.0	48
46	Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111). Physical Review B, 2006, 73, .	1.1	47
47	Phase transitions in an Fe system containing a bcc/fcc phase boundary: An atomistic study. Physical Review B, 2013, 87, .	1.1	47
48	Transformation pathways in the solid-solid phase transitions of iron nanowires. Applied Physics Letters, 2009, 95, .	1.5	43
49	Adsorption of BMP-2 on a hydrophobic graphite surface: A molecular dynamics study. Chemical Physics Letters, 2011, 510, 252-256.	1.2	43
50	Nanoscratching of metallic glasses – An atomistic study. Tribology International, 2019, 139, 1-11.	3.0	43
51	Visualization of <i>ke V</i> -ion-induced spikes in metals. Radiation Effects and Defects in Solids, 1997, 142, 439-447.	0.4	42
52	Atomic dynamics of explosive boiling of liquid-argon films. Applied Physics B: Lasers and Optics, 2005, 81, 675-679.	1.1	42
53	COLLISIONS OF POROUS CLUSTERS: A GRANULAR-MECHANICS STUDY OF COMPACTION AND FRAGMENTATION. Astrophysical Journal, 2012, 752, 151.	1.6	42
54	Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Applied Surface Science, 2016, 389, 688-695.	3.1	42

#	Article	IF	CITATIONS
55	Energy and angular distributions of sputtered particles: A comparison between analytical theory and computer simulation results. Nuclear Instruments & Methods in Physics Research B, 1988, 30, 507-513.	0.6	40
56	Statistical properties of collision cascades. Nuclear Instruments & Methods in Physics Research B, 1990, 48, 399-403.	0.6	40
57	Cluster-size dependence of ranges of 100eV/atom Aun clusters. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 57-63.	0.6	40
58	Experimental and atomistic study of the elastic properties of α′ Fe–C martensite. Acta Materialia, 2012, 60, 4901-4907.	3.8	40
59	A phase field approach for multivariant martensitic transformations of stable and metastable phases. Archive of Applied Mechanics, 2013, 83, 849-859.	1.2	40
60	Scratching of hcp metals: A molecular-dynamics study. Computational Materials Science, 2016, 113, 187-197.	1.4	40
61	Monte Carlo simulation of growth and decay processes in a cluster aggregation source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 256-265.	0.9	39
62	Molecular dynamics study of the α–γ phase transition in Fe induced by shear deformation. Acta Materialia, 2013, 61, 5979-5987.	3.8	39
63	Influence of Tip Geometry on Nanoscratching. Tribology Letters, 2017, 65, 1.	1.2	38
64	Step Edge Sputtering Yield at Grazing Incidence Ion Bombardment. Physical Review Letters, 2004, 92, 246106.	2.9	37
65	Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron. Physical Review B, 2009, 80, .	1.1	37
66	Solid–solid phase transitions in Fe nanowires induced by axial strain. Nanotechnology, 2009, 20, 325704.	1.3	36
67	Molecular-dynamics study of the α↔γ phase transition in Fe–C. Computational Materials Science, 2014, 82, 399-404.	1.4	34
68	Evolution of plasticity in nanometric cutting of Fe single crystals. Applied Surface Science, 2014, 317, 6-10.	3.1	33
69	Surface binding energies of alloys: a many-body approach. Nuclear Instruments & Methods in Physics Research B, 1994, 88, 218-228.	0.6	32
70	A LAMMPS implementation of granular mechanics: Inclusion of adhesive and microscopic friction forces. Computer Physics Communications, 2012, 183, 986-992.	3.0	32
71	Interplay of plasticity and phase transformation in shock wave propagation in nanocrystalline iron. New Journal of Physics, 2014, 16, 093032.	1.2	32
72	Collision cascades as fractals. Physica Scripta, 1987, 36, 689-692.	1.2	31

#	Article	IF	CITATIONS
73	Superior Regularity in Erosion Patterns by Planar Subsurface Channeling. Physical Review Letters, 2006, 96, 106103.	2.9	31
74	Enhancing Protein Adsorption Simulations by Using Accelerated Molecular Dynamics. PLoS ONE, 2013, 8, e64883.	1.1	31
75	Accelerated Molecular Dynamics Study of the Effects of Surface Hydrophilicity on Protein Adsorption. Langmuir, 2016, 32, 9156-9162.	1.6	31
76	Simulation of the influence of energetic atoms on Si homoepitaxial growth. Physical Review B, 1998, 58, 2050-2054.	1.1	30
77	Adatom formation and atomic layer growth on Al(111) by ion bombardment: experiments and molecular dynamics simulations. Surface Science, 2001, 488, 346-366.	0.8	30
78	Sputtering of a Au surface covered with large spherical clusters. International Journal of Mass Spectrometry, 2001, 208, 29-35.	0.7	30
79	Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation: a molecular-dynamics study. Journal Physics D: Applied Physics, 2005, 38, 2933-2941.	1.3	30
80	Dislocation interactions during nanoindentation of nickel-graphene nanocomposites. Computational Materials Science, 2019, 170, 109158.	1.4	30
81	Sputtered atom transport in highâ€current gas discharges: A selfâ€consistent computer simulation study. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 676-681.	0.9	29
82	Sputter yield of curved surfaces. Physical Review B, 2015, 91, .	1.1	29
83	Influence of phase transition on shock-induced spallation in nanocrystalline iron. Journal of Applied Physics, 2015, 118, .	1.1	29
84	The Influence of Lubrication and the Solid–Fluid Interaction on Thermodynamic Properties in a Nanoscopic Scratching Process. Langmuir, 2019, 35, 16948-16960.	1.6	29
85	keV-atom bombardment of condensed rare gases: molecular dynamics simulation. Nuclear Instruments & Methods in Physics Research B, 1993, 73, 14-28.	0.6	28
86	Ta cluster bombardment of graphite: molecular dynamics study of penetration and damage. Nuclear Instruments & Methods in Physics Research B, 1998, 145, 503-508.	0.6	28
87	Ranges and fragmentation behavior of fullerene molecules: A molecular-dynamics study of the dependence on impact energy and target material. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 247-252.	0.6	28
88	Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Computational Materials Science, 2016, 119, 82-89.	1.4	28
89	Ion-induced mixing and demixing in the immiscible Ni-Ag system. Physical Review B, 2001, 63, .	1.1	27
90	Step-edge sputtering through grazing incidence ions investigated by scanning tunneling microscopy and molecular dynamics simulations. Physical Review B, 2008, 77, .	1.1	26

#	Article	IF	CITATIONS
91	Collision-spike Sputtering of Au Nanoparticles. Nanoscale Research Letters, 2015, 10, 1009.	3.1	26
92	Shear-Transformation Zone Activation during Loading and Unloading in Nanoindentation of Metallic Glasses. Materials, 2019, 12, 1477.	1.3	26
93	Exceptionally high spallation strength for a high-entropy alloy demonstrated by experiments and simulations. Journal of Alloys and Compounds, 2022, 895, 162567.	2.8	26
94	Sputtering of Au by cluster impact. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 208-213.	0.6	25
95	Influence of local curvature on sputtering. Applied Physics Letters, 2013, 103, .	1.5	25
96	Compaction and plasticity in nanofoams induced by shock waves: A molecular dynamics study. Computational Materials Science, 2016, 119, 27-32.	1.4	25
97	Accelerating Steered Molecular Dynamics: Toward Smaller Velocities in Forced Unfolding Simulations. Journal of Chemical Theory and Computation, 2016, 12, 1380-1384.	2.3	25
98	Effect of surface steps on sputtering and surface defect formation: molecular-dynamics study of 5 keV Xe+ bombardment of Pt(111) at glancing incidence angles. Surface Science, 2003, 547, 315-323.	0.8	24
99	Probing the limitations of Sigmund's model of spatially resolved sputtering using Monte Carlo simulations. Physical Review B, 2016, 93, .	1.1	24
100	Preferential sputtering of alloys: a molecular-dynamics study. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 261-271.	0.6	23
101	Comparison of classical and tight-binding molecular dynamics for silicon growth. Physical Review B, 1996, 53, 16497-16503.	1.1	23
102	Influence of electronic stopping on sputtering induced by cluster impact on metallic targets. Physical Review B, 2009, 79, .	1.1	23
103	Effect of material stiffness on hardness: A computational study based on model potentials. Philosophical Magazine, 2009, 89, 2225-2238.	0.7	23
104	Atomistic dynamics of the bcc↔fcc phase transition in iron: Competition of homo- and heterogeneous phase growth. Computational Materials Science, 2014, 81, 170-177.	1.4	23
105	Morphological changes in polycrystalline Fe after compression and release. Journal of Applied Physics, 2015, 117, .	1.1	23
106	Sputtering of a metal nanofoam by Au ions. Nuclear Instruments & Methods in Physics Research B, 2015, 342, 234-239.	0.6	23
107	Influence of porosity on collisions between dust aggregates. Astronomy and Astrophysics, 2016, 589, A30.	2.1	23
108	Energy deposition, reflection and sputtering in hyperthermal rare-gas?Cu bombardment. Applied Physics A: Materials Science and Processing, 1995, 61, 39-43.	1.1	22

#	Article	IF	CITATIONS
109	Tight-binding molecular-dynamics study ofaâ^'Si:H: Preparation, structure, and dynamics. Physical Review B, 1999, 60, 5478-5484.	1.1	22
110	Monte Carlo description of gas flow from laser-evaporated silver. Applied Physics A: Materials Science and Processing, 1999, 69, S577-S581.	1.1	22
111	The bouncing threshold in silica nanograin collisions. Physical Chemistry Chemical Physics, 2017, 19, 16555-16562.	1.3	22
112	Size of the Plastic Zone Produced by Nanoscratching. Tribology Letters, 2018, 66, 1.	1.2	22
113	Influence of the spatial and temporal structure of the deposited-energy distribution in swift-ion-induced sputtering. Physical Review B, 2003, 68, .	1.1	21
114	Effect of laser pulse width on material phenomena in ultrathin metal films irradiated by an ultrafast laser: molecular-dynamics study. Journal Physics D: Applied Physics, 2007, 40, 3518-3526.	1.3	21
115	Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering. , 2010, , .		21
116	Crater formation caused by nanoparticle impact: A molecular dynamics study of crater volume and shape. Physical Review B, 2012, 85, .	1.1	21
117	Dislocation-based strengthening mechanisms in metal-matrix nanocomposites: a molecular dynamics study of the influence of reinforcement shape in the Al-Si system. Computational Materials Science, 2018, 145, 109-115.	1.4	21
118	Indentation into an Al/Si composite: enhanced dislocation mobility at interface. Journal of Materials Science, 2018, 53, 799-813.	1.7	21
119	Energy partitioning and particle spectra in multicomponent collision cascades. Physical Review B, 1993, 47, 617-629.	1.1	20
120	Nuclear sputtering of condensed diatomic gases. The Journal of Physical Chemistry, 1995, 99, 15565-15572.	2.9	20
121	Nanoindentation tests of heavy-ion-irradiated Au foams—molecular dynamics simulation. Journal of Applied Physics, 2018, 123, .	1.1	20
122	Interaction of Dislocations and Interfaces in Crystalline Heterostructures: A Review of Atomistic Studies. Crystals, 2019, 9, 584.	1.0	20
123	Dimer emission in alloy sputtering and the concept of the "clustering probability― Nuclear Instruments & Methods in Physics Research B, 1995, 103, 131-138.	0.6	19
124	Stress relaxation inaâ^'Siinduced by ion bombardment. Physical Review B, 2000, 62, 11219-11224.	1.1	19
125	Dynamics of <scp>l</scp> -Phenylalanine Sputtering by Argon Cluster Bombardment. Journal of Physical Chemistry C, 2014, 118, 7962-7970.	1.5	19
126	Forced Desorption of Bovine Serum Albumin and Lysozyme from Graphite: Insights from Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2016, 120, 7889-7895.	1.2	19

#	Article	IF	CITATIONS
127	Nucleation of plasticity in nanoparticle collisions. Physical Review E, 2016, 93, 063004.	0.8	19
128	The elastic–plastic transition in nanoparticle collisions. Physical Chemistry Chemical Physics, 2016, 18, 3423-3429.	1.3	19
129	Preferential effects in low-energy Si bombardment of SiC. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 287-294.	0.6	18
130	Sputtering of Au (111) by 64keV/atom Au clusters. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 75-83.	0.6	18
131	Computer simulation of strain-induced phase transformations in thin Fe films. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 085007.	0.8	18
132	Effect of binding energy and mass in cluster-induced sputtering of van-der-Waals bonded systems. Nuclear Instruments & Methods in Physics Research B, 2005, 228, 84-91.	0.6	17
133	Impact on porous targets: Penetration, crater formation, target compaction, and ejection. Physical Review E, 2012, 86, 061313.	0.8	17
134	Temperature-induced phase transformation of Fe1-xNix alloys: molecular-dynamics approach. European Physical Journal B, 2015, 88, 1.	0.6	17
135	Scratching an Al/Si Interface: Molecular Dynamics Study of a Composite Material. Tribology Letters, 2018, 66, 1.	1.2	17
136	Fractal structure of collision cascades. Nuclear Instruments & Methods in Physics Research B, 1990, 48, 404-407.	0.6	16
137	Collision cascades in binary media: Analytical results for power-law cross sections. Nuclear Instruments & Methods in Physics Research B, 1992, 69, 413-426.	0.6	16
138	Preferential sputtering of atoms and dimers from ordered and disordered Cu3Au. Nuclear Instruments & Methods in Physics Research B, 1999, 152, 459-471.	0.6	16
139	Particle-in-cell simulation of the pulsed planar expansion of a fully ionized plasma off a surface. Physics of Plasmas, 2002, 9, 3209-3216.	0.7	16
140	Cluster-induced crater formation. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3122-3125.	0.6	16
141	Why Nanoprojectiles Work Differently than Macroimpactors: The Role of Plastic Flow. Physical Review Letters, 2012, 108, 027601.	2.9	16
142	Martensitic and austenitic phase transformations in Fe–C nanowires. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 045003.	0.8	16
143	Dislocations Help Initiate the α–γ Phase Transformation in Iron—An Atomistic Study. Metals, 2019, 9, 90.	1.0	16
144	Applicability of cutting theory to nanocutting of metallic glasses: Atomistic simulation. Journal of Non-Crystalline Solids, 2020, 550, 120363.	1.5	16

#	Article	IF	CITATIONS
145	An atomistic study of shear-band formation during cutting of metallic glasses. Journal of Applied Physics, 2020, 127, .	1.1	16
146	Sputtering of large clusters: Information from mass spectra. Radiation Effects and Defects in Solids, 1989, 109, 293-300.	0.4	15
147	Ion peening and stress relaxation induced by low-energy atom bombardment of covalent solids. Physical Review B, 2001, 63, .	1.1	15
148	Trails of Kilovolt Ions Created by Subsurface Channeling. Physical Review Letters, 2010, 104, 075501.	2.9	15
149	Ultrafast laser irradiation of spherical nanoparticles: molecular-dynamics results on fragmentation and small-angle scattering. European Physical Journal D, 2015, 69, 1.	0.6	15
150	Irradiation of astrophysical ice grains by cosmic-ray ions: a REAX simulation study. Astronomy and Astrophysics, 2016, 592, A35.	2.1	15
151	Nanoscratching of iron: A novel approach to characterize dislocation microstructures. Computational Materials Science, 2017, 135, 181-188.	1.4	15
152	Geometrical aspects of nanofillers influence the tribological performance of Al-based nanocomposites. Wear, 2020, 444-445, 203117.	1.5	15
153	Effects of Lubrication on the Friction in Nanometric Machining Processes: A Molecular Dynamics Approach. Applied Mechanics and Materials, 0, 869, 85-93.	0.2	15
154	Influence of adatom coverage on sputter yield. Nuclear Instruments & Methods in Physics Research B, 1996, 117, 361-366.	0.6	14
155	Expansion flow and cluster distributions originating from ultrafast-laser-induced fragmentation of thin metal films: A molecular-dynamics study. Physical Review B, 2006, 73, .	1.1	14
156	Chemical Energy Release and Radical Formation in Cluster-Induced Sputtering of Diatomic Molecular Targets: A Molecular-Dynamics Model Study. Physical Review Letters, 2007, 99, 027602.	2.9	14
157	Computer Simulation of the Sputtering Process. , 2007, , 21-31.		14
158	Nonlinear stopping of heavy clusters in matter: A case study. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 497-500.	0.6	14
159	Ultrashort-pulse laser irradiation of metal films: theÂeffectÂofÂaÂdouble-peak laser pulse. Applied Physics A: Materials Science and Processing, 2010, 101, 509-515.	1.1	14
160	News on sputter theory: Molecular targets, nanoparticle desorption, rough surfaces. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 947-954.	0.6	14
161	Crater formation by nanoparticle impact: contributions of gas, melt and plastic flow. New Journal of Physics, 2012, 14, 083016.	1.2	14
162	Impacts into cosmic ice surfaces: A molecular-dynamics study using the Reax force field. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 200-204.	0.6	14

#	Article	IF	CITATIONS
163	Microstructure and magnetic disorder induced by nanoindentation in single-crystalline Fe. Physical Review B, 2014, 89, .	1.1	14
164	Insulin adsorption on crystalline SiO2: Comparison between polar and nonpolar surfaces using accelerated molecular-dynamics simulations. Chemical Physics Letters, 2017, 670, 77-83.	1.2	14
165	Influence of pre-existing plasticity on nanoindentation – an atomistic analysis of the dislocation fields produced. Journal of the Mechanics and Physics of Solids, 2019, 132, 103674.	2.3	14
166	Response of an amorphous/crystalline interface to nanoindentation: an atomistic study. Applied Surface Science, 2021, 551, 149285.	3.1	14
167	Interaction between parallel shear bands in a metallic glass. Journal of Non-Crystalline Solids, 2021, 566, 120882.	1.5	14
168	Energy and angular distribution of pulsed-laser desorbed particles: the influence of a hot contribution on a cold desorbing species. Journal Physics D: Applied Physics, 1997, 30, 185-193.	1.3	13
169	Simulation of sheath dynamics and current nonuniformity in plasma-immersion ion implantation of a patterned surface. Journal of Applied Physics, 2003, 93, 4420-4431.	1.1	13
170	Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1817.	0.9	13
171	A simple algorithm for constructing fractal aggregates with pre-determined fractal dimension. Computer Physics Communications, 2013, 184, 1683-1685.	3.0	13
172	Martensitic transformation of pure iron at a grain boundary: Atomistic evidence for a two-step Kurdjumov-Sachs–Pitsch pathway. AIP Advances, 2016, 6, .	0.6	13
173	Diffusion of cisplatin molecules in silica nanopores: Molecular dynamics study of a targeted drug delivery system. Journal of Molecular Graphics and Modelling, 2019, 86, 228-234.	1.3	13
174	Boron nitride nanotubes as containers for targeted drug delivery of doxorubicin. Journal of Molecular Modeling, 2020, 26, 54.	0.8	13
175	Effect of energy density on cluster formation from energized metals. Computational Materials Science, 1996, 6, 7-14.	1.4	12
176	Free energies of austenite and martensite Fe–C alloys: an atomistic study. Philosophical Magazine, 2014, 94, 933-945.	0.7	12
177	Effect of swift-ion irradiation on DNA molecules: A molecular dynamics study using the REAX force field. Nuclear Instruments & Methods in Physics Research B, 2015, 365, 622-625.	0.6	12
178	Static and Dynamic Wetting Behavior of Drops on Impregnated Structured Walls by Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2017, 121, 12669-12683.	1.5	12
179	Dust-aggregate impact into granular matter: A systematic study of the influence of projectile velocity and size on crater formation and grain ejection. Astronomy and Astrophysics, 2017, 607, A19.	2.1	12
180	Monte Carlo study of fluence dependent mixing and sputtering of isotopic targets under ion bombardment. Surface Science, 1992, 278, 414-426.	0.8	11

#	Article	IF	CITATIONS
181	Transmission of low-energy oxygen ions through ultrathin rare-gas films: Molecular-dynamics simulation. Physical Review B, 1995, 51, 4597-4605.	1.1	11
182	Modification of a-Si under 100 eV Si atom bombardment. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 299-305.	0.6	11
183	Atomistic simulation of stress effects in a-Si due to low-energy Si impact. Surface Science, 2002, 496, 196-208.	0.8	11
184	Surface channelling in grazing-incidence ion bombardment of a stepped surface. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 373-377.	0.6	11
185	Nanostructured surfaces yield earlier: Molecular dynamics study of nanoindentation into adatom islands. Physical Review B, 2010, 81, .	1.1	11
186	Effect of Molecular Dissociation Energy on the Sputtering of Molecular Targets. Journal of Physical Chemistry C, 2010, 114, 5499-5505.	1.5	11
187	Influence of defects on extreme ultraviolet laser ablation of LiF. Physical Review B, 2013, 88, .	1.1	11
188	Hybrid particle-in-cell/molecular dynamics simulation of swift-ion tracks in LiF. Physical Review B, 2013, 87, .	1.1	11
189	Collisionâ€Induced Melting in Collisions of Water Ice Nanograins: Strong Deformations and Prevention of Bouncing. Geophysical Research Letters, 2017, 44, 10,822.	1.5	11
190	Influence of the Crystal Surface on the Austenitic and Martensitic Phase Transition in Pure Iron. Crystals, 2018, 8, 469.	1.0	11
191	Stucture and size of the plastic zone formed during nanoindentation of a metallic glass. Journal of Non-Crystalline Solids, 2019, 523, 119593.	1.5	11
192	Adsorption and Diffusion of Cisplatin Molecules in Nanoporous Materials: A Molecular Dynamics Study. Biomolecules, 2019, 9, 204.	1.8	11
193	Energetic sulfur ion impacts into cometary ice surfaces: a molecular dynamics study. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2374-2388.	1.6	11
194	Molecular dynamics simulations of the mechanical behavior of alumina coated aluminum nanowires under tension and compression. RSC Advances, 2020, 10, 14353-14359.	1.7	11
195	Cutting of Al/Si bilayer systems: molecular dynamics study of twinning, phase transformation, and cracking. International Journal of Advanced Manufacturing Technology, 2020, 107, 1297-1307.	1.5	11
196	Interaction of dislocations and shear bands in cutting of an amorphous-crystalline bilayer: An atomistic study. Computational Materials Science, 2021, 192, 110379.	1.4	11
197	Tight-binding simulation of liquid and amorphous Si at zero pressure. Computational Materials Science, 1999, 13, 252-258.	1.4	10
198	Simulation of sheath and presheath dynamics in PIII. Surface and Coatings Technology, 2002, 156, 131-135.	2.2	10

#	Article	IF	CITATIONS
199	Hyperthermal cluster-surface scattering. European Physical Journal D, 2006, 39, 423-432.	0.6	10
200	Deformation of slow liquid and solid clusters upon deposition: A molecular-dynamics study of Al cluster impact on an Al surface. Surface Science, 2006, 600, 2587-2593.	0.8	10
201	Response of ultrathin metal films to ultrafast laser irradiation: A comparative molecular-dynamics study. Journal of Physics: Conference Series, 2007, 59, 68-74.	0.3	10
202	Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin. Journal of Molecular Modeling, 2009, 15, 959-969.	0.8	10
203	Role of cohesive energy in droplet fragmentation. Physical Review E, 2011, 84, 056315.	0.8	10
204	Orientation dependence in nanocutting of Fe single crystals: A molecular-dynamics study. Computational Materials Science, 2018, 143, 286-294.	1.4	10
205	Collisions between ice-covered silica grains: An atomistic study. Icarus, 2020, 352, 113996.	1.1	10
206	Indentation and scratching of iron by a rotating tool – a molecular dynamics study. Computational Materials Science, 2021, 194, 110445.	1.4	10
207	α ↔ γ phase transformation in iron: comparative study of the influence of the interatomic interaction potential. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 055011.	0.8	10
208	Bouncing of Hydroxylated Silica Nanoparticles: an Atomistic Study Based on REAX Potentials. Nanoscale Research Letters, 2020, 15, 67.	3.1	10
209	Nanocutting: A Comparative Molecular-Dynamics Study of Fcc, Bcc, and Hcp Metals. Current Nanoscience, 2016, 13, 40-47.	0.7	10
210	Effect of bulk binding forces on energetic-ion-induced collision cascades: A combined simulational and analytical approach. Nuclear Instruments & Methods in Physics Research B, 1995, 103, 275-283.	0.6	9
211	Plasma recovery in plasma immersion ion implantation: dependence on pulse frequency and duty cycle. Journal Physics D: Applied Physics, 2002, 35, 462-467.	1.3	9
212	Grazing incidence impact of ions on an adatom-covered surface: Molecular-dynamics study of sputtering, surface-damage formation and ion-induced adatom mobility. Surface Science, 2006, 600, 1260-1264.	0.8	9
213	Protein isolation through impact desolvation of electrosprayed microdroplets (IDEM): Molecular dynamics simulation. International Journal of Mass Spectrometry, 2010, 289, 119-127.	0.7	9
214	Impact Desolvation of Polymers Embedded in Nanodroplets. Journal of Physical Chemistry B, 2011, 115, 13280-13286.	1.2	9
215	Glancing ion incidence on Si(100): Influence of surface reconstruction on ion subsurface channeling. Physical Review B, 2012, 85, .	1.1	9
216	Influence of C concentration on elastic moduli of α′-Fe _{1-<i>x</i>} C _{<i>x</i>} alloys. Philosophical Magazine, 2016, 96, 1448-1462.	0.7	9

#	Article	IF	CITATIONS
217	Low-velocity collisions of chondrules: How a thin dust cover helps enhance the sticking probability. Astronomy and Astrophysics, 2017, 599, L4.	2.1	9
218	Insulin adsorption on functionalized silica surfaces: an accelerated molecular dynamics study. Journal of Molecular Modeling, 2018, 24, 89.	0.8	9
219	Ferrite-to-Austenite and Austenite-to-Martensite Phase Transformations in the Vicinity of a Cementite Particle: A Molecular Dynamics Approach. Metals, 2018, 8, 837.	1.0	9
220	Influence of tip adhesion on nanoindentation and scratching. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 065014.	0.8	9
221	Cyclic Indentation of Iron: A Comparison of Experimental and Atomistic Simulations. Metals, 2019, 9, 541.	1.0	9
222	Bouncing window for colliding nanoparticles: Role of dislocation generation. Physical Review E, 2019, 99, 032904.	0.8	9
223	Influence of the Rake Angle on Nanocutting of Fe Single Crystals: A Molecular-Dynamics Study. Crystals, 2020, 10, 516.	1.0	9
224	Strength of Graphene-Coated Ni Bi-Crystals: A Molecular Dynamics Nano-Indentation Study. Materials, 2020, 13, 1683.	1.3	9
225	Collisions between micro-sized aggregates: role of porosity, mass ratio, and impact velocity. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1717-1733.	1.6	9
226	Statistics of light-ion-induced kinetic electron emission: The sum of Poisson distribution. Physical Review B, 1993, 47, 7446-7453.	1.1	8
227	Presheath dynamics induced by sudden electrode voltage jumps. Journal Physics D: Applied Physics, 2000, 33, 3066-3072.	1.3	8
228	Implantation and damage under oblique low-energy Si self-bombardment. Physical Review B, 2001, 63, .	1.1	8
229	Nonequilibrium phenomena inN2-cluster–surface collisions: A molecular-dynamics study of fragmentation, lateral jetting, and nonequilibrium energy distributions. Physical Review A, 2006, 74, .	1.0	8
230	Dependence of cluster ranges on target cohesive energy: Molecular-dynamics study of energetic Au402 cluster impacts. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 44-48.	0.6	8
231	Influence of a single adatom on sputtering at grazing incidence – A molecular-dynamics case study of 5keV Ar impact on Pt (111). Surface Science, 2009, 603, 320-325.	0.8	8
232	Reversible plasticity under nanoindentation of atomically flat and stepped surfaces of fcc metals. Philosophical Magazine Letters, 2009, 89, 717-723.	0.5	8
233	Stopping of hypervelocity clusters in solids. New Journal of Physics, 2011, 13, 113019.	1.2	8
234	Melting of Al by ultrafast laser pulses: dynamics at the melting threshold. Applied Physics A: Materials Science and Processing, 2013, 110, 649-654.	1.1	8

#	Article	IF	CITATIONS
235	Anisotropy of the crater function of the Cu surface under Ar bombardment. Nuclear Instruments & Methods in Physics Research B, 2013, 295, 72-75.	0.6	8
236	Laser Ablation of Nanoparticles: A Molecular Dynamics Study. Advanced Materials Research, 2015, 1112, 120-123.	0.3	8
237	Role of the Surface in Solid–Solid Phase Transitions: Molecular Dynamics Study of the α-γ Transition in Fe. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2471-2480.	1.1	8
238	The α↔γ transformation of an Fe _{1â^'<i>x</i>} Cr <i>_x</i> alloy: A molecular-dynamics approach. International Journal of Modern Physics C, 2016, 27, 1650124.	0.8	8
239	Sputtering of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Si</mml:mi><mml:mi nanospheres. Physical Review B, 2018, 97, .</mml:mi </mml:msub></mml:mrow></mml:math 	>as‡mml:r	ni s
240	Influence of porosity on high-velocity mass-asymmetric collisions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1937-1946.	1.6	8
241	Fragmentation and energy dissipation in collisions of polydisperse granular clusters. Astronomy and Astrophysics, 2020, 633, A24.	2.1	8
242	Effect of Tip Roundness on the Nanoindentation of Fe Crystals. Tribology Letters, 2020, 68, 1.	1.2	8
243	Interaction between a charged or neutral particle and a semi-infinite nonpolar dielectric liquid. Physical Review B, 1991, 44, 8226-8232.	1.1	7
244	Laser-induced desorption of overlayer films off a heated metal substrate. Applied Surface Science, 2007, 253, 4142-4149.	3.1	7
245	Cluster-induced sputtering of molecular targets. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3227-3231.	0.6	7
246	Sputtering and reflection under cluster bombardment of solids. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 304-307.	0.6	7
247	Effect of uni- and biaxial strain on phase transformations in Fe thin films. International Journal of Computational Materials Science and Engineering, 2016, 05, 1650001.	0.5	7
248	Dislocations penetrating an Al/Si interface. AIP Advances, 2017, 7, 125119.	0.6	7
249	High-energy ion impacts into the sulfur-bearing ice surface of Europa: an atomistic study of chemical transformations. Astronomy and Astrophysics, 2019, 625, A140.	2.1	7
250	Functionalized silica surfaces as carriers for monoclonal antibodies in targeted drug delivery systems: Accelerated molecular dynamics study. Chemical Physics Letters, 2020, 739, 136988.	1.2	7
251	Dislocation structures below a nano-indent of the CoCrNi medium-entropy alloy. Materials Letters, 2021, 283, 128821.	1.3	7
252	On the scaling of fragmentation and energy dissipation in collisions of dust aggregates. Granular Matter, 2021, 23, 1.	1.1	7

#	Article	IF	CITATIONS
253	Peripheral Collisions of Ice-covered Silica Dust Grains. Astrophysical Journal, 2022, 925, 173.	1.6	7
254	Simulation of ion-induced mixing of metals. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 485-488.	0.6	6
255	A fluid model of the bulk plasma in a cylindrical magnetized low-pressure RF discharge and comparison with PIC - MC simulation results. Plasma Sources Science and Technology, 1996, 5, 389-400.	1.3	6
256	Damage production ina-Si under low-energy self-atom bombardment. Journal of Applied Physics, 2001, 90, 689-695.	1.1	6
257	Particle-in-cell study of charge-state segregation in expanding plasmas due to three-body recombination. Journal Physics D: Applied Physics, 2004, 37, 2981-2986.	1.3	6
258	Parametric study of ion acceleration in a one-dimensional plasma expansion using the particle-in-cell simulation. Physical Review E, 2004, 69, 056408.	0.8	6
259	Competition of terrace and step-edge sputtering under oblique-incidence ion impact on a stepped Pt(111) surface. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2769-2773.	0.6	6
260	Water Evaporation and Conformational Changes from Partially Solvated Ubiquitin. Biochemistry Research International, 2010, 2010, 1-6.	1.5	6
261	Sputtering at grazing ion incidence: Influence of adatom islands. Physical Review B, 2010, 82, .	1.1	6
262	Sputtering from swift-ion trails in LiF: A hybrid PIC/MD simulation. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 313-317.	0.6	6
263	Subsurface channeling of keV ions between graphene layers: Molecular dynamics simulation. Physical Review B, 2015, 91, .	1.1	6
264	A phase field model for martensitic transformations with a temperature-dependent separation potential. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 481-482.	0.2	6
265	Comparative Study of Interatomic Interaction Potentials for Describing Indentation into Si Using Molecular Dynamics Simulation. Applied Mechanics and Materials, 0, 869, 3-8.	0.2	6
266	Solar wind ion impacts into ice surfaces: A molecular-dynamics study using the REAX force field. Icarus, 2017, 282, 351-362.	1.1	6
267	Laser induced ablation of aluminum nanoparticle: a molecular dynamics study. MATEC Web of Conferences, 2018, 197, 04004.	0.1	6
268	Effect of subsurface voids on the nanoindentation of Fe crystals. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 025010.	0.8	6
269	Reproducibility of atomistic friction computer experiments: a molecular dynamics simulation study. Molecular Simulation, 2021, 47, 1509-1521.	0.9	6
270	A note on the isotope effect in preferential sputtering from compounds. Nuclear Instruments & Methods in Physics Research B, 1993, 73, 151-152.	0.6	5

#	Article	IF	CITATIONS
271	SUB-keV ATOM INDUCED SPUTTERING OF CONDENSED N2: A MOLECULAR DYNAMICS STUDY. Modern Physics Letters B, 1993, 07, 857-863.	1.0	5
272	Disordering and annealing of a Si surface under low-energy Si bombardment. Radiation Effects and Defects in Solids, 1997, 142, 497-515.	0.4	5
273	High-frequency electron-gas secondary neutral mass spectrometry: evaluation of transient effects. Journal Physics D: Applied Physics, 1997, 30, 1676-1682.	1.3	5
274	Sheath structure and ion current onto a patterned surface immersed in a plasma at floating potential. Surface and Coatings Technology, 2002, 160, 259-268.	2.2	5
275	Simulation study of the effect of recombination processes in an expanding plasma. Journal of Plasma Physics, 2005, 71, 589.	0.7	5
276	Molecular simulations of cluster ejection by CO2 cluster impact on carbon-based surfaces. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 3080-3083.	0.6	5
277	Response of polymer molecules embedded in a nanodroplet to collisions with a wall. Soft Matter, 2012, 8, 4708.	1.2	5
278	Sputtering of silicon membranes with nanoscale thickness. Journal of Applied Physics, 2016, 119, .	1.1	5
279	Crater production by energetic nanoparticle impact on Au nanofoams. Applied Physics Letters, 2016, 108, .	1.5	5
280	Instationary compaction wave propagation in highly porous cohesive granular media. Computational Particle Mechanics, 2016, 3, 429-434.	1.5	5
281	Influence of grain boundaries on the austenitic and martensitic phase transitions in iron. European Physical Journal B, 2019, 92, 1.	0.6	5
282	Vibrational and magnetic signatures of extended defects in Fe. European Physical Journal B, 2020, 93, 1.	0.6	5
283	Changes in the phonon density of states of Fe induced by external strain. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	5
284	Atomistic simulation of amorphization during AlN nanoindentation. Ceramics International, 2021, 47, 15968-15978.	2.3	5
285	Morphology of graphene flakes in Ni-graphene nanocomposites and its influence on hardness: An atomistic study. Carbon, 2021, 185, 660-668.	5.4	5
286	Numerical study of collisional mixing: the FeLu system revisited. Nuclear Instruments & Methods in Physics Research B, 1993, 83, 125-139.	0.6	4
287	The influence of electron reflection at the electrode and secondary electron emission on a strongly magnetized low-pressure RF discharge. Journal Physics D: Applied Physics, 1996, 29, 378-387.	1.3	4
288	Self-consistent simulation of a planar electron-cyclotron-wave-resonance discharge. Journal of Applied Physics, 1997, 81, 7163-7169.	1.1	4

#	Article	IF	CITATIONS
289	Molecular-dynamics study of the decomposition of an unstable Ni–Ag alloy. Nuclear Instruments & Methods in Physics Research B, 1999, 153, 369-377.	0.6	4
290	Laser-irradiation-induced temperature jump at interfaces: Evidence for the Kapitza effect in molecular-dynamics simulation. Computational Materials Science, 2006, 38, 51-55.	1.4	4
291	Excitation of stress waves in overlayer films induced by a sudden heating of the substrate. Journal Physics D: Applied Physics, 2006, 39, 4621-4627.	1.3	4
292	Precession of the Earth–Moon system. European Journal of Physics, 2009, 30, 1427-1433.	0.3	4
293	Desolvation of polymers by ultrafast heating: InfluenceÂofÂhydrophilicity. Applied Physics A: Materials Science and Processing, 2010, 101, 71-76.	1.1	4
294	Evaporation of solvent molecules by ultrafast heating: effect on conformation of solvated protein. Rapid Communications in Mass Spectrometry, 2010, 24, 349-354.	0.7	4
295	Sputtering of dimers off a silicon surface. Nuclear Instruments & Methods in Physics Research B, 2012, 289, 97-99.	0.6	4
296	Influence of the ion impact azimuth on glancing-incidence keV ion impact on the Si(100) surface. Surface Science, 2013, 615, 41-46.	0.8	4
297	Atom and molecule emission caused by ion impact into a frozen oxygen target: Role of rovibrational excitation. Nuclear Instruments & Methods in Physics Research B, 2013, 315, 308-312.	0.6	4
298	Sputtering of a silicon surface: Preferential sputtering of surface impurities. Nuclear Instruments & Methods in Physics Research B, 2013, 303, 205-208.	0.6	4
299	Polyatomic bismuth impacts into germanium: Molecular dynamics study. Physical Review B, 2013, 87, .	1.1	4
300	Ablation of a nanostructured metal surface by ultrashort X-ray pulses. Applied Surface Science, 2014, 307, 142-145.	3.1	4
301	Melting of Al Induced by Laser Excitation of 2p Holes. Materials Research Letters, 2015, 3, 149-155.	4.1	4
302	Magnetic structure of [0Â0Â1] tilt grain boundaries in bcc Fe studied via magnetic potentials. Philosophical Magazine, 2017, 97, 3027-3041.	0.7	4
303	Impact of energetic cosmic-ray ions on astrophysical ice grains. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 34-38.	0.6	4
304	Alcohol reduces muscle fatigue through atomistic interactions with nicotinic receptors. Communications Biology, 2018, 1, 159.	2.0	4
305	Stopping of porous projectiles in granular targets. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L13-L17.	1.2	4
306	Spin-lattice dynamics of surface vs core magnetization in Fe nanoparticles. Applied Physics Letters, 2021, 119, .	1.5	4

#	Article	IF	CITATIONS
307	Influence of stoichiometry on indentation-induced plasticity in CuZr glasses. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
308	Granular mechanics simulations of collisions between chondritic aggregates. Astronomy and Astrophysics, 2021, 652, A40.	2.1	4
309	Collisions between amorphous carbon nanoparticles: phase transformations. Astronomy and Astrophysics, 2020, 641, A159.	2.1	4
310	Acoustic tube models of the human vocal tract for the university classroom. European Journal of Physics, 2020, 41, 065804.	0.3	4
311	A Structural Feature of the Non-Peptide Ligand Interactions with Mice Mu-Opioid Receptors. Current Computer-Aided Drug Design, 2015, 10, 354-360.	0.8	4
312	Influence of vacancies on the temperature-dependent magnetism of bulk Fe: A spin-lattice dynamics approach. Computational Condensed Matter, 2022, 31, e00662.	0.9	4
313	Chapter 17 Sputtering and Laser Ablation. Handbook of Surface Science, 2008, 3, 871-913.	0.3	3
314	Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering. Materials Research Society Symposia Proceedings, 2009, 1230, 1.	0.1	3
315	Sputtering induced by cluster impact on metal targets: Influenceof electronic stopping. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2765-2768.	0.6	3
316	Acoustic tube model of the human vocal tract: formants and vowels. European Journal of Physics, 2014, 35, 045017.	0.3	3
317	Subsurface and interface channeling of keV ions in graphene/SiC. Nuclear Instruments & Methods in Physics Research B, 2014, 340, 5-10.	0.6	3
318	Compaction of highly porous granular matter by impacts on a hard wall. Physical Review E, 2015, 91, 042205.	0.8	3
319	Electronic sputtering of solid O2 by keV Ne ions. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 230-234.	0.6	3
320	The Laser ablation of a metal foam: The role of electron–phonon coupling and electronic heat diffusivity. Journal of Applied Physics, 2018, 123, 034305.	1.1	3
321	Molecular dynamics simulations of single grain pure aluminum in a vice fixture for nanomanufacturing applications. CIRP Journal of Manufacturing Science and Technology, 2018, 23, 91-97.	2.3	3
322	Effect of Alloying Elements on the \hat{I} ±- \hat{I} ³ Phase Transformation in Iron. Materials, 2019, 12, 1355.	1.3	3
323	Nanoindentation into a metastable austenite triggers the martensitic phase transformation—An atomistic study. AIP Advances, 2019, 9, .	0.6	3
324	Molecular dynamics of rolling and twisting motion of amorphous nanoparticles. Scientific Reports, 2021, 11, 14591.	1.6	3

#	Article	IF	CITATIONS
325	Transition to chip serration in simulated cutting of metallic glasses. European Physical Journal B, 2021, 94, 1.	0.6	3
326	Bouncing and spinning of amorphous Lennard-Jones nanoparticles under oblique collisions. Scientific Reports, 2022, 12, .	1.6	3
327	Calculation of electromagnetic fields and resonance conditions in a cylindrical ECWR discharge. Plasma Sources Science and Technology, 1997, 6, 415-426.	1.3	2
328	Reply to "Comment on †Energy partitioning and particle spectra in multicomponent collision cascades' ― Physical Review B, 2004, 69, .	1.1	2
329	Insight from molecular dynamics simulation into ultrashort-pulse laser ablation. Proceedings of SPIE, 2010, , .	0.8	2
330	The sputter cross section of a surface-vacancy island. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1619-1624.	0.6	2
331	Ejection of Glycine Molecules Adsorbed on a Water Ice Surface by Swift-heavy Ion Irradiation. Astrophysical Journal, 2020, 891, 21.	1.6	2
332	Bouncing and sticking collisions of organic nanoparticles: Atomistic study. Astronomy and Astrophysics, 2021, 647, L13.	2.1	2
333	Transition flow in an impact pressure probe: Relevance of gas–wall interaction. Physics of Fluids, 1997, 9, 1344-1352.	1.6	1
334	Ion beam mixing of α-MoSi2. Radiation Effects and Defects in Solids, 1997, 142, 517-524.	0.4	1
335	Sputtering of condensed polyatomic gases by kilo-electron-volt-energy ions. International Journal of Mass Spectrometry, 2001, 212, 477-489.	0.7	1
336	Damage production in low-energy Au and Si irradiation of a-Si: Influence of projectile mass. Nuclear Instruments & Methods in Physics Research B, 2003, 202, 125-131.	0.6	1
337	Particle fluxes in binary collision cascades: Analytic results for arbitrary interaction cross-sections. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 537-541.	0.6	1
338	Lowâ€frequency vibrational modes in blue opsin: A computational study. International Journal of Quantum Chemistry, 2010, 110, 278-283.	1.0	1
339	Desolvation of macromolecules by ultrafast heating: A molecular-dynamics study. European Physical Journal E, 2012, 35, 99.	0.7	1
340	Influence of Elastic Stiffness and Surface Adhesion on Bouncing of Nanoparticles. Nanoscale Research Letters, 2017, 12, 637.	3.1	1
341	Ethanol-induced conformational fluctuations of NMDA receptors. Molecular Physics, 2019, 117, 200-206.	0.8	1
342	Atomistic Simulation of Nanodroplet Collisions with a Wall: Fragmentation and Impact Desolvation of Macromolecules. Lecture Notes in Nanoscale Science and Technology, 2013, , 169-193.	0.4	1

#	Article	IF	CITATIONS
343	Temperature-dependent magnetism in Fe foams via spin-lattice dynamics. Computational Materials Science, 2022, 211, 111483.	1.4	1
344	Can sputtering of condensed gas targets be modelled by the nonlinear Boltzmann equation?. Radiation Effects and Defects in Solids, 1993, 127, 15-25.	0.4	0
345	Monte Carlo study of isolated defect production in ion-induced collision cascades. Radiation Effects and Defects in Solids, 1993, 127, 27-35.	0.4	0
346	Recoil ranges in ion-induced collision cascades. Nuclear Instruments & Methods in Physics Research B, 1999, 153, 361-368.	0.6	0
347	Ultrafast laser irradiation vs cluster ion impact: molecular-dynamics comparison of materials processes in highly energized solids. , 2008, , .		0
348	Molecule emission from condensed Ar and O 2 targets by 750 eV Ne impact. Nuclear Instruments & Methods in Physics Research B, 2015, 352, 195-201.	0.6	0
349	Conformational Changes of the NMDA Receptors Associated with Ethanol-Induced Inhibition. Biophysical Journal, 2016, 110, 447a.	0.2	0
350	Glancing ion incidence on a graphite-supported graphene flake: Lift-off vs welding. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 111-115.	0.6	0
351	Cluster Evolution from Ultrafast Laser Irradiation of Gold Nanoparticle: A Molecular Dynamics Study. Journal of Physics: Conference Series, 2020, 1428, 012004.	0.3	0
352	Distortion of a polycrystalline Al bar in a vice fixture: molecular dynamics analysis of grain movement and rotation. International Journal of Advanced Manufacturing Technology, 2021, 117, 147-158.	1.5	0
353	The Physics of the Sputter Erosion Process. , 1990, , 185-199.		0
354	PIC/MC Modeling of an Ion Source: Case Study. Journal De Physique III, 1996, 6, 1219-1228.	0.3	0
355	Indentation and Scratching with a Rotating Adhesive Tool: A Molecular Dynamics Simulation Study. Tribology Letters, 2022, 70, .	1.2	0