Jie Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6099146/publications.pdf

Version: 2024-02-01

37 papers	2,150 citations	15 h-index	345221 36 g-index
37 all docs	37 docs citations	37 times ranked	2341 citing authors

#	Article	IF	CITATIONS
1	Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. Journal of the American Chemical Society, 2012, 134, 14706-14709.	13.7	1,370
2	A–π–D–π–A carbazole derivatives with remarkable solvatochromism and mechanoresponsive luminescence turn-on. Journal of Materials Chemistry C, 2017, 5, 6136-6143.	5.5	102
3	Mechanically Responsive Luminescent Polymers Based on Supramolecular Cyclophane Mechanophores. Journal of the American Chemical Society, 2021, 143, 5519-5525.	13.7	76
4	Zigâ€Zag Acridine/Sulfone Derivative with Aggregationâ€Induced Emission and Enhanced Thermally Activated Delayed Fluorescence in Amorphous Phase for Highly Efficient Nondoped Blue Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1701256.	7.3	60
5	Solution-processed small-molecular white organic light-emitting diodes based on a thermally activated delayed fluorescence dendrimer. Journal of Materials Chemistry C, 2017, 5, 10001-10006.	5.5	49
6	Bipolar hosts and non-doped deep-blue emitters (CIE _y = 0.04) based on phenylcarbazole and 2-(2-phenyl-2H-1,2,4-triazol-3-yl)pyridine groups. Journal of Materials Chemistry C, 2017, 5, 4455-4462.	5 . 5	46
7	Achieving red/near-infrared mechanoresponsive luminescence turn-on: mechanically disturbed metastable nanostructures in organic solids. Chemical Communications, 2017, 53, 1309-1312.	4.1	45
8	Deep-blue thermally activated delayed fluorescence dendrimers withÂreduced singlet-triplet energy gap for low roll-off non-doped solution-processed organic light-emitting diodes. Dyes and Pigments, 2017, 140, 79-86.	3.7	42
9	A novel white-light-emitting conjugated polymer derived from polyfluorene with a hyperbranched structure. New Journal of Chemistry, 2015, 39, 5180-5188.	2.8	31
10	A planar dithiafulvene based sensitizer forming J -aggregates on TiO 2 photoanode to enhance the performance of dye-sensitized solar cells. Dyes and Pigments, 2017, 136, 97-103.	3.7	26
11	Rational design of slightly twisted coumarin molecules with remarkable solution and solid dual efficient luminescence. Dyes and Pigments, 2018, 149, 73-81.	3.7	25
12	1, 3-Indanedione functionalized fluorene luminophores: Negative solvatochromism, nanostructure-morphology determined AIE and mechanoresponsive luminescence turn-on. Dyes and Pigments, 2018, 155, 225-232.	3.7	23
13	Two novel bipolar compounds based-on 1, 2, 4-triazol derivatives for non-doped deep-blue and green phosphorescent OLED applications. Dyes and Pigments, 2017, 143, 25-32.	3.7	21
14	Solutionâ€Processed Warm White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescence Dendrimer. ChemPlusChem, 2018, 83, 274-278.	2.8	21
15	An efficient blue thermally activated delayed fluorescence material based on 4-fluorocyanobenzene derivative for organic light-emitting diodes. Tetrahedron Letters, 2016, 57, 2044-2048.	1.4	20
16	Non-doped white organic light-emitting diodes with superior efficiency/color stability by employing ultra-thin phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 4250-4256.	5.5	15
17	Regulation of dithiafulvene-based molecular shape and aggregation on TiO ₂ for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 1974-1981.	5.5	15
18	Design, synthesis and properties of triple-color hyperbranched polymers derived from poly(9,9-dioctylfluorene) with phosphorescent core tris(1-phenylisoquinoline)iridium(â¢). Dyes and Pigments, 2016, 125, 339-347.	3.7	13

#	Article	IF	CITATIONS
19	Efficient management of excitons in red and white organic light-emitting diodes by employing blue thermally activated delayed fluorescent emitter based acridine/sulfone derivative as the host. Organic Electronics, 2018, 57, 311-316.	2.6	13
20	Metal-free organic luminophores with ultrastrong dipole moment exhibiting force-induced near-infrared emission (>800 nm) turn-on. Chemical Communications, 2018, 54, 11455-11458.	4.1	12
21	TADF material with non-conjugated rigid donor for high-performance full-color phosphorescent OLEDs: Effects of triplet harvest and charge transport on efficiency. Organic Electronics, 2020, 85, 105826.	2.6	11
22	One-dimensional self-assembly of phenylacetylene macrocycles: Effect of peripheral substituents. Journal of Colloid and Interface Science, 2013, 395, 99-103.	9.4	10
23	Fluorene-based hyperbranched copolymers with spiro [3.3] heptane-2,6-dispirofluorene as the conjugation-uninterrupted branching point and their application in WPLEDs. New Journal of Chemistry, 2015, 39, 5977-5983.	2.8	10
24	Polyfluorene-based white light conjugated polymers incorporating orange iridium(<scp>iii</scp>) complexes: the effect of steric configuration on their photophysical and electroluminescent properties. RSC Advances, 2018, 8, 1638-1646.	3.6	10
25	Structural design for highly efficient pure fluorescent warm WOLEDs by employing TADF molecule as blue emitter and exciplex donor. Organic Electronics, 2019, 73, 1-6.	2.6	10
26	An AIE-active acridine functionalized spiro[fluorene-9,9′-xanthene] luminophore with mechanoresponsive luminescence for anti-counterfeiting, information encryption and blue OLEDs. Journal of Materials Chemistry C, 2022, 10, 7857-7865.	5.5	10
27	Synthesis, structure, photophysical and electroluminescent properties of a blue-green self-host phosphorescent iridium(III) complex. Materials Chemistry and Physics, 2015, 162, 392-399.	4.0	9
28	A novel high-efficiency white hyperbranched polymer derived from polyfluorene with green and red iridium(III) complexes as the cores. Dyes and Pigments, 2016, 130, 191-201.	3.7	8
29	Utilizing the heterocyclic effect towards high contrast ratios of mechanoresponsive luminescence based on aromatic aldehydes. Journal of Materials Chemistry C, 2019, 7, 12328-12335.	5.5	8
30	Deep information-hiding based on cascade thermoresponsive luminescence switching of A–π–D–π–A typed carbazole derivatives. Chemical Engineering Journal, 2021, 426, 131293.	12.7	8
31	Synthesis and properties of hyperbranched polymers for polymer light emitting devices with sunlight-style white emission. RSC Advances, 2019, 9, 22176-22184.	3.6	7
32	Hyperbranched fluorene-alt-carbazole copolymers with spiro [3.3] heptane-2,6-dispirofluorene as the core and their application in white polymer light-emitting devices. RSC Advances, 2015, 5, 49662-49670.	3.6	6
33	Synthesis and properties of hyperbranched fluorescence/phosphorescence hybrid copolymers for white polymer light emitting devices. Tetrahedron, 2015, 71, 8052-8058.	1.9	5
34	Molecular engineering of dithiafulvene organic sensitizers with pyridine acceptor for high efficiency dye-sensitized solar cells. Science China Materials, 2016, 59, 797-806.	6.3	5
35	Acceptor-density engineering of push-pull typed carbazole derivatives for improving luminescent efficiency and mechanoresponsive luminescence. Journal of Luminescence, 2020, 226, 117453.	3.1	5
36	Triplet collection for highly efficient single-emitting-layer pure fluorescent WOLED based thermally activated delayed fluorescent host of acridine/sulfone derivative. Optical Materials, 2020, 110, 110510.	3.6	3

#	Article	IF	CITATIONS
37	Lifting Triplet Energy and Bipolar Characteristics by Limiting the Rotation of the Peripheral Groups in Host Materials to Achieve Highâ€Efficiency Blue OLED. Chemistry - an Asian Journal, 2022, 17, e202101298.	3.3	0