J Xavier Prochaska

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6098877/j-xavier-prochaska-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80 391 22,433 134 h-index g-index citations papers 6.95 6.5 25,548 402 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
391	Characterizing the Fast Radio Burst Host Galaxy Population and its Connection to Transients in the Local and Extragalactic Universe. <i>Astronomical Journal</i> , 2022 , 163, 69	4.9	15
390	A Fast Radio Burst Progenitor Born in a Galaxy Merger. Astrophysical Journal Letters, 2022 , 925, L20	7.9	О
389	Deep Learning of Dark Energy Spectroscopic Instrument Mock Spectra to Find Damped Ly\(\text{B}\) Systems. <i>Astrophysical Journal, Supplement Series</i> , 2022 , 259, 28	8	O
388	Constraining the Cosmic Baryon Distribution with Fast Radio Burst Foreground Mapping. <i>Astrophysical Journal</i> , 2022 , 928, 9	4.7	2
387	He ii Ly [®] Transmission Spikes and Absorption Troughs in Eight High-resolution Spectra Probing the End of He ii Reionization. <i>Astrophysical Journal</i> , 2022 , 927, 175	4.7	
386	The CGM2 Survey: Circumgalactic O vi from Dwarf to Massive Star-forming Galaxies. <i>Astrophysical Journal</i> , 2022 , 927, 147	4.7	2
385	A Multiwavelength Study of ELAN Environments (AMUSE2). Mass Budget, Satellites Spin Alignment, and Gas Infall in a Massive z ~ 3 Quasar Host Halo. <i>Astrophysical Journal</i> , 2022 , 930, 72	4.7	1
384	Optical Spectroscopy of Dual Quasar Candidates from the Subaru HSC-SSP program. <i>Astrophysical Journal</i> , 2021 , 922, 83	4.7	1
383	Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. <i>Astrophysical Journal</i> , 2021 , 922, 173	4.7	7
382	Estimating the Contribution of Foreground Halos to the FRB 180924 Dispersion Measure. <i>Astrophysical Journal</i> , 2021 , 921, 134	4.7	2
381	Massive Molecular Outflow and 100 kpc Extended Cold Halo Gas in the Enormous LyENebula of QSO 1228+3128. <i>Astrophysical Journal Letters</i> , 2021 , 922, L29	7.9	2
380	The Nature of Hi-absorption-selected Galaxies at z â[4. Astrophysical Journal, 2021, 921, 68	4.7	2
379	The Third Data Release of the KODIAQ Survey. Astronomical Journal, 2021, 161, 45	4.9	4
378	The COS Absorption Survey of Baryon Harbors: unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 4993-5037	4.3	9
377	MUSE analysis of gas around galaxies (MAGG) \hat{a} III. The gas and galaxy environment of $z=3\hat{a}$ II. quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 503, 3044-3064	4.3	11
376	Circumgalactic Mg ii Emission from an Isotropic Starburst Galaxy Outflow Mapped by KCWI. <i>Astrophysical Journal</i> , 2021 , 909, 151	4.7	15
375	CGM2 I: The Extent of the Circumgalactic Medium Traced by Neutral Hydrogen. <i>Astrophysical Journal</i> , 2021 , 912, 9	4.7	9

(2020-2021)

374	Probabilistic Association of Transients to their Hosts (PATH). Astrophysical Journal, 2021, 911, 95	4.7	8
373	New Evidence for Extended He ii Reionization at z ? 3.5 from He ii Lyman Alpha and Beta Transmission Spikes*. <i>Astrophysical Journal</i> , 2021 , 912, 38	4.7	6
372	Multiwavelength Follow-up of FRB180309. Astrophysical Journal, 2021, 913, 78	4.7	1
371	Dating individual quasars with the He ii proximity effect. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 505, 5084-5103	4.3	7
370	Statistical Correlation between the Distribution of LyÆmitters and Intergalactic Medium H i at z ~ 2.2 Mapped by the Subaru/Hyper Suprime-Cam. <i>Astrophysical Journal</i> , 2021 , 907, 3	4.7	9
369	A Long Stream of Metal-poor Cool Gas around a Massive Starburst Galaxy at z = 2.67. <i>Astrophysical Journal</i> , 2021 , 908, 188	4.7	4
368	Polyphorm: Structural Analysis of Cosmological Datasets via Interactive Physarum Polycephalum Visualization. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2021 , 27, 806-816	4	4
367	On the environments of giant radio galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021 , 502, 5104-5114	4.3	3
366	Modeling the Prompt Optical Emission of GRB 180325A: The Evolution of a Spike from the Optical to Gamma Rays. <i>Astrophysical Journal</i> , 2021 , 908, 39	4.7	1
365	Deep Learning of Sea Surface Temperature Patterns to Identify Ocean Extremes. <i>Remote Sensing</i> , 2021 , 13, 744	5	1
365 364		5 4·7	1
	2021 , 13, 744		
364	A High-resolution View of Fast Radio Burst Host Environments. <i>Astrophysical Journal</i> , 2021 , 917, 75 Constraining bright optical counterparts of fast radio bursts. <i>Astronomy and Astrophysics</i> , 2021 ,	4.7	17
364	A High-resolution View of Fast Radio Burst Host Environments. <i>Astrophysical Journal</i> , 2021 , 917, 75 Constraining bright optical counterparts of fast radio bursts. <i>Astronomy and Astrophysics</i> , 2021 , 653, A119 Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. <i>Astrophysical</i>	4·7 5.1	17 3
364 363 362	A High-resolution View of Fast Radio Burst Host Environments. <i>Astrophysical Journal</i> , 2021 , 917, 75 Constraining bright optical counterparts of fast radio bursts. <i>Astronomy and Astrophysics</i> , 2021 , 653, A119 Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. <i>Astrophysical Journal Letters</i> , 2021 , 919, L23 Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at z = 2.3. <i>Astrophysical</i>	4·7 5.1 7·9	17 3 17
364 363 362 361	A High-resolution View of Fast Radio Burst Host Environments. <i>Astrophysical Journal</i> , 2021 , 917, 75 Constraining bright optical counterparts of fast radio bursts. <i>Astronomy and Astrophysics</i> , 2021 , 653, A119 Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. <i>Astrophysical Journal Letters</i> , 2021 , 919, L23 Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at z = 2.3. <i>Astrophysical Journal</i> , 2021 , 922, 236 Monte Carlo Physarum Machine: Characteristics of Pattern Formation in Continuous Stochastic	4·7 5·1 7·9 4·7	17 3 17
364 363 362 361 360	A High-resolution View of Fast Radio Burst Host Environments. <i>Astrophysical Journal</i> , 2021 , 917, 75 Constraining bright optical counterparts of fast radio bursts. <i>Astronomy and Astrophysics</i> , 2021 , 653, A119 Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. <i>Astrophysical Journal Letters</i> , 2021 , 919, L23 Discovery of a Protocluster Core Associated with an Enormous Lya Nebula at z = 2.3. <i>Astrophysical Journal</i> , 2021 , 922, 236 Monte Carlo Physarum Machine: Characteristics of Pattern Formation in Continuous Stochastic Transport Networks <i>Artificial Life</i> , 2021 , 1-36 A Multiwavelength Study of ELAN Environments (AMUSE2). Detection of a Dusty Star-forming Galaxy within the Enormous Ly®Nebula at z=2.3 Sheds Light on its Origin. <i>Astrophysical Journal</i> ,	4·7 5·1 7·9 4·7	17 3 17 1

356	A census of baryons in the Universe from localized fast radio bursts. <i>Nature</i> , 2020 , 581, 391-395	50.4	167
355	Gaia-assisted discovery of a detached low-ionisation BAL quasar with very large ejection velocities. <i>Astronomy and Astrophysics</i> , 2020 , 634, A111	5.1	2
354	A Data-driven Technique Using Millisecond Transients to Measure the Milky Way Halo. <i>Astrophysical Journal Letters</i> , 2020 , 895, L49	7.9	11
353	Revealing the Dark Threads of the Cosmic Web. <i>Astrophysical Journal Letters</i> , 2020 , 891, L35	7.9	16
352	Spectropolarimetric Analysis of FRB 181112 at Microsecond Resolution: Implications for Fast Radio Burst Emission Mechanism. <i>Astrophysical Journal Letters</i> , 2020 , 891, L38	7.9	52
351	Effective Opacity of the Intergalactic Medium from Galaxy Spectra Analysis. <i>Astronomical Journal</i> , 2020 , 160, 37	4.9	2
350	Deep Hubble Space Telescope Imaging on the Extended LyÆmission of a QSO at z = 2.19 with a Damped Lyman Alpha System as a Natural Coronagraph. <i>Astrophysical Journal Letters</i> , 2020 , 889, L12	7.9	1
349	MUSE Analysis of Gas around Galaxies (MAGG) âll: Survey design and the environment of a near pristine gas cloud at z âlb.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 2057-2074	4.3	16
348	Pypelt: The Python Spectroscopic Data Reduction Pipeline. <i>Journal of Open Source Software</i> , 2020 , 5, 2308	5.2	30
347	Three-dimensional Distribution Map of H i Gas and Galaxies around an Enormous Lyllebula and Three QSOs at z = 2.3 Revealed by the H i Tomographic Mapping Technique. <i>Astrophysical Journal</i> , 2020 , 896, 45	4.7	10
346	The PHLEK Survey: A New Determination of the Primordial Helium Abundance. <i>Astrophysical Journal</i> , 2020 , 896, 77	4.7	17
345	Project AMIGA: The Circumgalactic Medium of Andromeda. <i>Astrophysical Journal</i> , 2020 , 900, 9	4.7	25
344	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. <i>Astrophysical Journal</i> , 2020 , 899, 161	4.7	34
343	First Constraints on Compact Dark Matter from Fast Radio Burst Microstructure. <i>Astrophysical Journal</i> , 2020 , 900, 122	4.7	7
342	Disentangling the Cosmic Web toward FRB 190608. Astrophysical Journal, 2020, 901, 134	4.7	14
341	Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors. <i>Astrophysical Journal</i> , 2020 , 903, 152	4.7	64
340	Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy. <i>Astrophysical Journal Letters</i> , 2020 , 901, L20	7.9	24
339	High Molecular Gas Masses in Absorption-selected Galaxies at z âl. Astrophysical Journal Letters, 2020 , 901, L5	7.9	8

(2019-2020)

338	Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics. <i>Astrophysical Journal Letters</i> , 2020 , 905, L30	7.9	12
337	A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. <i>Astronomy and Astrophysics</i> , 2020 , 639, A119	5.1	7
336	MUSE Analysis of Gas around Galaxies (MAGG) $\hat{a}\Pi$: metal-enriched halo gas around z ~ 1 galaxies. Monthly Notices of the Royal Astronomical Society, 2020 , 499, 5022-5046	4.3	20
335	A semisupervised machine learning search for never-seen gravitational-wave sources. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 5408-5419	4.3	3
334	Optically thin spatially resolved Mg ii emission maps the escape of ionizing photons. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 2554-2574	4.3	15
333	Constraining magnetic fields in the circumgalactic medium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 3142-3151	4.3	8
332	Quasar Sightline and Galaxy Evolution (QSAGE) survey âll. Galaxy overdensities around UV luminous quasars at z 1â	4.3	6
331	Testing galaxy formation simulations with damped Lyman-bundance and metallicity evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 492, 2835-2846	4.3	7
330	Discovery of a Rare Late-type, Low-mass Wolfâ R ayet Star in the LMC. <i>Astrophysical Journal</i> , 2020 , 888, 54	4.7	5
329	The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. <i>Science</i> , 2019 , 366, 231-234	33.3	137
328	Kinematics of C iv and [O iii] emission in luminous high-redshift quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 5335-5348	4.3	16
327	Enhancement of H \Box absorption associated with the z = 3.1 large-scale proto-cluster and characteristic structures with AGNs sculptured over Gpc scale in the SSA22 field. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 ,	4.3	6
326	Quasar Sightline and Galaxy Evolution (QSAGE) survey \hat{a} . The galaxy environment of O vi absorbers up to z = 1.4 around PKS 0232 \hat{a} 04. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 486, 21-41	4.3	19
325	The power spectrum of the Lyman-Forest at z Monthly Notices of the Royal Astronomical Society, 2019 , 486, 769-782	4.3	17
324	Spectroscopic Redshift of the Gamma-Ray Blazar B2 1215+30 from LyŒmission. <i>Astronomical Journal</i> , 2019 , 157, 41	4.9	2
323	Discovery of a Lytemitting Dark Cloud within the z ~ 2.8 SMM J02399-0136 System. <i>Astrophysical Journal</i> , 2019 , 875, 130	4.7	8
322	The Evolution of the He ii-ionizing Background at Redshifts 2.3 Astrophysical Journal, 2019 , 875, 111	4.7	22
321	CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass, and radius. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 484, 3625-3645	4.3	17

320	A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 485, 5294-5318	4.3	12
319	QSO MUSEUM I: a sample of 61 extended Ly \(\pm\)emission nebulae surroundingz~ 3 quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 3162-3205	4.3	64
318	Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy âllı. Candidates from continued radial velocity tests. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 3288-3307	4.3	22
317	The large- and small-scale properties of the intergalactic gas in the Slug Ly Hebula revealed by MUSE He ii emission observations. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 483, 5188-5	2 0 4	48
316	Probing Galactic haloes with fast radio bursts. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 ,	4.3	71
315	Imprints of the first billion years: Lyman limit systems atz~ 5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 1456-1470	4.3	6
314	Reverse Shock Emission Revealed in Early Photometry in the Candidate Short GRB 180418A. <i>Astrophysical Journal</i> , 2019 , 881, 12	4.7	10
313	Linking gas and galaxies at high redshift: MUSE surveys the environments of six damped Ly systems at z âB. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 5070-5096	4.3	18
312	A single fast radio burst localized to a massive galaxy at cosmological distance. <i>Science</i> , 2019 , 365, 565	-5 79 .3	208
311	Multi-filament gas inflows fuelling young star-forming galaxies. <i>Nature Astronomy</i> , 2019 , 3, 822-831	12.1	21
310	The COS Absorption Survey of Baryon Harbors (CASBaH): WarmâHot Circumgalactic Gas Reservoirs Traced by Ne viii Absorption. <i>Astrophysical Journal Letters</i> , 2019 , 877, L20	7.9	36
309	A Metal-poor Damped Ly⊞ystem at Redshift 6.4. <i>Astrophysical Journal</i> , 2019 , 885, 59	4.7	22
308	The COS Absorption Survey of Baryon Harbors: The Galaxy Database and Cross-correlation Analysis of O vi Systems. <i>Astrophysical Journal, Supplement Series</i> , 2019 , 243, 24	8	15
307	The Cold Circumgalactic Environment of MAMMOTH-I: Dynamically Cold Gas in the Core of an Enormous LyHebula. <i>Astrophysical Journal</i> , 2019 , 887, 86	4.7	12
306	The Nature of Ionized Gas in the Milky Way Galactic Fountain. Astrophysical Journal, 2019, 887, 89	4.7	14
305	HI Absorption in the Intergalactic Medium. Saas-Fee Advanced Course, 2019, 111-188	1.2	1
304	GRB 180620A: Evidence for Late-time Energy Injection. Astrophysical Journal, 2019, 887, 254	4.7	1
303	Galactic Gas Flows from Halo to Disk: Tomography and Kinematics at the Milky WayâʿʿB DiskâʾḤalo Interface. <i>Astrophysical Journal</i> , 2019 , 882, 76	4.7	12

(2018-2019)

302	A VLT/FORS2 Narrowband Imaging Search for Mg ii Emission around z ~ 0.7 Galaxies. <i>Astrophysical Journal</i> , 2019 , 879, 7	4.7	7
301	Evolution of the Cool Gas in the Circumgalactic Medium of Massive Halos: A Keck Cosmic Web Imager Survey of LyÆmission around QSOs at z âl. Astrophysical Journal, Supplement Series, 2019, 245, 23	8	37
300	Discovery of intergalactic bridges connecting two faint $z \sim 3$ quasars. Astronomy and Astrophysics, 2019 , 631, A18	5.1	10
299	ALMA C ii 158 th Imaging of an H i-selected Major Merger at z ~ 4. <i>Astrophysical Journal Letters</i> , 2019 , 886, L35	7.9	5
298	[C ii] 158 Im Emission from z ~ 4 H i Absorption-selected Galaxies. <i>Astrophysical Journal Letters</i> , 2019 , 870, L19	7.9	17
297	Massive, Absorption-selected Galaxies at Intermediate Redshifts. <i>Astrophysical Journal Letters</i> , 2018 , 856, L23	7.9	19
296	Deep learning of quasar spectra to discover and characterize damped Ly stems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 1151-1168	4.3	35
295	Quasar 2175 Idust absorbers âlli. Correlation analysis and relationship with other absorption line systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4870-4880	4.3	11
294	A VLT/MUSE galaxy survey towards QSO Q1410: looking for a WHIM traced by BLAs in inter-cluster filaments?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 2991-3013	4.3	4
293	The Spectral and Environment Properties of z \sim 2.0â \overline{a} .5 Quasar Pairs. Astrophysical Journal, 2018 , 860, 41	4.7	8
292	Keck/Palomar Cosmic Web Imagers Reveal an Enormous Ly Enebula in an Extremely Overdense Quasi-stellar Object Pair Field at z = 2.45. <i>Astrophysical Journal Letters</i> , 2018 , 861, L3	7.9	30
291	Spectral Image Classification with Deep Learning. <i>Publications of the Astronomical Society of the Pacific</i> , 2018 , 130, 094501	5	1
290	ALMA + VLT observations of a damped Lyman-labsorbing galaxy: massive, wide CO emission, gas-rich but with very low SFR. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 474, 4039-4055	4.3	19
289	Quasars Probing Quasars. IX. The Kinematics of the Circumgalactic Medium Surroundingz~ 2 Quasars. <i>Astrophysical Journal</i> , 2018 , 857, 126	4.7	14
288	Quasars Probing Quasars. X. The Quasar Pair Spectral Database. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 236, 44	8	9
287	Dissecting cold gas in a high-redshift galaxy using a lensed background quasar. <i>Astronomy and Astrophysics</i> , 2018 , 619, A142	5.1	9
286	On the CGM Fundamental Plane: The Halo Mass Dependency of Circumgalactic H i. <i>Astrophysical Journal</i> , 2018 , 864, 132	4.7	13
285	Searching for the Lowest-metallicity Galaxies in the Local Universe. <i>Astrophysical Journal</i> , 2018 , 863, 134	4.7	18

284	ALMA observations of a metal-rich damped Ly \blacksquare bsorber at z = 2.5832: evidence for strong galactic winds in a galaxy group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 479, 2126-2132	4.3	13
283	Revealing the Host Galaxy of a Quasar 2175 A Dust Absorber at z = 2.12. <i>Astrophysical Journal Letters</i> , 2018 , 857, L12	7.9	4
282	Overdensity of submillimeter galaxies around the z ? 2.3 MAMMOTH-1 nebula. <i>Astronomy and Astrophysics</i> , 2018 , 620, A202	5.1	14
281	Two more, bright, z > 6 quasars from VST ATLAS and WISE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 478, 1649-1659	4.3	21
280	Extreme Circumgalactic H i and C iii Absorption around the Most Massive, Quenched Galaxies. <i>Astrophysical Journal</i> , 2018 , 867, 106	4.7	5
279	Hunting for metals using XQ-100 Legacy Survey composite spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 105-121	4.3	8
278	A Search for the Host Galaxy of FRB 171020. Astrophysical Journal Letters, 2018, 867, L10	7.9	30
277	On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys Iâll. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 3520-3529	4.3	4
276	The gas and stellar mass of low-redshift damped Lyman-Babsorbers. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2018 , 473, L54-L58	4.3	7
275	The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. <i>Astronomical Journal</i> , 2018 , 156, 123	4.9	2084
² 75		4.9	2084
	Astronomical Journal, 2018, 156, 123 First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest		
274	Astronomical Journal, 2018, 156, 123 First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest Tomography at 2.05 Astrophysical Journal, Supplement Series, 2018, 237, 31 Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds.	8	50
²⁷⁴ ²⁷³	Astronomical Journal, 2018, 156, 123 First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest Tomography at 2.05 Astrophysical Journal, Supplement Series, 2018, 237, 31 Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016 MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions	8 4.3	50
274 273 272	First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest Tomography at 2.05 Astrophysical Journal, Supplement Series, 2018, 237, 31 Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016 MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at zlata. 5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1977-1999 The astrophysical consequences of intervening galaxy gas on fast radio bursts. Monthly Notices of	8 4.3 4.3	50 31 27
274 273 272 271	First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest Tomography at 2.05 Astrophysical Journal, Supplement Series, 2018, 237, 31 Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016 MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at zlate. 5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1977-1999 The astrophysical consequences of intervening galaxy gas on fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2018, 474, 318-325 Inspiraling halo accretion mapped in Ly Emission around a zlate quasar. Monthly Notices of the	8 4·3 4·3	50 31 27
274 273 272 271 270	First Data Release of the COSMOS Ly Mapping and Tomography Observations: 3D Ly Forest Tomography at 2.05 Astrophysical Journal, Supplement Series, 2018, 237, 31 Direct evidence of AGN feedback: a post-starburst galaxy stripped of its gas by AGN-driven winds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3993-4016 MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at zl\(\mathbb{L}\)2.5. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1977-1999 The astrophysical consequences of intervening galaxy gas on fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2018, 474, 318-325 Inspiraling halo accretion mapped in Ly \(\mathbb{L}\)emission around a zl\(\mathbb{L}\)B quasar. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3907-3940 Molecular Emission from a Galaxy Associated with a z ~ 2.2 Damped Ly \(\mathbb{L}\)Absorber. Astrophysical	8 4-3 4-3 4-3	50 31 27 9

(2017-2017)

266	Implications of $z\sim 6$ Quasar Proximity Zones for the Epoch of Reionization and Quasar Lifetimes. <i>Astrophysical Journal</i> , 2017 , 840, 24	4.7	89
265	Measurement of the small-scale structure of the intergalactic medium using close quasar pairs. <i>Science</i> , 2017 , 356, 418-422	33.3	29
264	No Evidence for Feedback: Unexceptional Low-ionization Winds in Host Galaxies of Low Luminosity Active Galactic Nuclei at Redshiftz~ 1. <i>Astrophysical Journal</i> , 2017 , 841, 83	4.7	7
263	The igmspec database of public spectra probing the intergalactic medium. <i>Astronomy and Computing</i> , 2017 , 19, 27-33	2.4	13
262	[C ii] 158-En emission from the host galaxies of damped Lyman-alpha systems. <i>Science</i> , 2017 , 355, 1285-7	1388	38
261	The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium. <i>Astrophysical Journal</i> , 2017 , 837, 169	4.7	159
260	Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. <i>Science</i> , 2017 , 358, 1556-1558	33.3	616
259	Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. <i>Science</i> , 2017 , 358, 1570-1574	33.3	352
258	Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. <i>Science</i> , 2017 , 358, 1583-1587	33.3	156
257	Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. <i>Science</i> , 2017 , 358, 1574-1578	33.3	170
256	A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a. <i>Astrophysical Journal Letters</i> , 2017 , 848, L34	7.9	86
255	The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source. <i>Astrophysical Journal Letters</i> , 2017 , 848, L26	7.9	27
254	The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source. <i>Astrophysical Journal Letters</i> , 2017 , 848, L30	7.9	39
253	Giant Metrewave Radio Telescope detection of associated H i 21-cm absorption atz 1.2230 towards TXS 1.954+513. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 5011-5015	4.3	16
252	Gas inflow and outflow in an interacting high-redshift galaxy. <i>Astronomy and Astrophysics</i> , 2017 , 607, A107	5.1	13
251	On the selection of damped Lyman Bystems using Mg ii absorption at2 . <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2017 , 464, L56-L60	4.3	13
250	Correcting Cliv-based virial black hole masses. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 2120-2142	4.3	94
249	The Second Data Release of the KODIAQ Survey. <i>Astronomical Journal</i> , 2017 , 154, 114	4.9	35

248	Mapping the Most Massive Overdensities through Hydrogen (MAMMOTH). II. Discovery of the Extremely Massive Overdensity BOSS1441 atz= 2.32. <i>Astrophysical Journal</i> , 2017 , 839, 131	4.7	61
247	Project AMIGA: A Minimal Covering Factor for Optically Thick Circumgalactic Gas around the Andromeda Galaxy. <i>Astrophysical Journal</i> , 2017 , 846, 141	4.7	10
246	ALMA and RATIR observations of GRB 31030A. <i>Publication of the Astronomical Society of Japan</i> , 2017 , psw124	3.2	2
245	The Circumgalactic Medium of Submillimeter Galaxies. II. Unobscured QSOs within Dusty Starbursts and QSO Sightlines with Impact Parameters below 100 kpc. <i>Astrophysical Journal</i> , 2017 , 844, 123	4.7	3
244	The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 114-125	4.3	87
243	Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 470, 1687-1702	4.3	20
242	Statistical Detection of the He ii Transverse Proximity Effect: Evidence for Sustained Quasar Activity for >25 Million Years. <i>Astrophysical Journal</i> , 2017 , 847, 81	4.7	31
241	The Little Cub: Discovery of an Extremely Metal-poor Star-forming Galaxy in the Local Universe. <i>Astrophysical Journal Letters</i> , 2017 , 845, L22	7.9	17
240	Circumgalactic Oxygen Absorption and Feedback. Astrophysical Journal Letters, 2017, 846, L24	7.9	28
239	Quasar 2175 dust absorbers âll. Metallicity, depletion pattern and kinematics. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 472, 2196-2220	4.3	14
238	Witnessing galaxy assembly in an extended zâB structure. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 471, 3686-3698	4.3	27
237	Significant and variable linear polarization during the prompt optical flash of GRB 160625B. <i>Nature</i> , 2017 , 547, 425-427	50.4	67
236	THE CIRCUMGALACTIC MEDIUM OF SUBMILLIMETER GALAXIES. I. FIRST RESULTS FROM A RADIO-IDENTIFIED SAMPLE. <i>Astrophysical Journal</i> , 2016 , 832, 52	4.7	8
235	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW REDSHIFT C iv ABSORBERS. III. THE MASS- AND ENVIRONMENT-DEPENDENT CIRCUMGALACTIC MEDIUM. <i>Astrophysical Journal</i> , 2016 , 832, 124	4.7	60
234	CONSTRAINING THE LIFETIME AND OPENING ANGLE OF QUASARS USING FLUORESCENT LyEMISSION: THE CASE OF Q0420âB88. <i>Astrophysical Journal</i> , 2016 , 830, 120	4.7	24
233	Chemical abundances of the damped Lyman Bystems in the XQ-100 survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 3021-3037	4.3	25
232	THE STACKED LYEMISSION PROFILE FROM THE CIRCUM-GALACTIC MEDIUM OFz~ 2 QUASARS. <i>Astrophysical Journal</i> , 2016 , 829, 3	4.7	35
231	Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 461, 2461-2479	4.3	22

230	A UNIVERSAL DENSITY STRUCTURE FOR CIRCUMGALACTIC GAS. Astrophysical Journal, 2016, 830, 87	4.7	82	
229	LOW-METALLICITY ABSORBERS ACCOUNT FOR HALF OF THE DENSE CIRCUMGALACTIC GAS ATz? 1. Astrophysical Journal, 2016 , 831, 95	4.7	46	
228	THE OPTICAL VARIABILITY OF SDSS QUASARS FROM MULTI-EPOCH SPECTROSCOPY. III. A SUDDEN UV CUTOFF IN QUASAR SDSS J2317+0005. <i>Astrophysical Journal</i> , 2016 , 826, 186	4.7	4	
227	QUASARS PROBING QUASARS. VIII. THE PHYSICAL PROPERTIES OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDING z ~ 2âB MASSIVE GALAXIES HOSTING QUASARS. <i>Astrophysical Journal, Supplement Series</i> , 2016 , 226, 25	8	49	
226	MUSE searches for galaxies near very metal-poor gas clouds at $z \sim 3$: new constraints for cold accretion models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 1978-1988	4.3	49	
225	Detailed design of a deployable tertiary mirror for the Keck I telescope 2016 ,		1	
224	The physical properties ofz> 2 Lyman limit systems: new constraints for feedback and accretion models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 4100-4121	4.3	61	
223	UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES. <i>Astronomical Journal</i> , 2016 , 151, 142	4.9	20	
222	DISCOVERY OF A DAMPED LyABSORBER ATz= 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD. <i>Astrophysical Journal</i> , 2016 , 817, 161	4.7	5	
221	OPTICAL AND NEAR-INFRARED OBSERVATIONS OF SN 2013DX ASSOCIATED WITH GRB 130702A. <i>Astrophysical Journal</i> , 2016 , 818, 79	4.7	34	
220	Towards the statistical detection of the warmâliot intergalactic medium in intercluster filaments of the cosmic web. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 2662-2697	4.3	25	
219	The evolution of neutral gas in damped Lyman⊞ystems from the XQ-100 survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 4488-4505	4.3	51	
218	THE H i CONTENT OF THE UNIVERSE OVER THE PAST 10 GYR. Astrophysical Journal, 2016 , 818, 113	4.7	60	
217	AN ULTRAVIOLET SPECTRUM OF THE TIDAL DISRUPTION FLARE ASASSN-14li. <i>Astrophysical Journal Letters</i> , 2016 , 818, L32	7.9	43	
216	The central engine of GRB 130831A and the energy breakdown of a relativistic explosion. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1027-1042	4.3	18	
215	Highly ionized region surrounding SN Refsdal revealed by MUSE. <i>Astronomy and Astrophysics</i> , 2016 , 585, A27	5.1	18	
214	XQ-100: A legacy survey of one hundred 3.5 ?z? 4.5 quasars observed with VLT/X-shooter. <i>Astronomy and Astrophysics</i> , 2016 , 594, A91	5.1	54	
213	THE COS-HALOS SURVEY: ORIGINS OF THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM OF STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2016 , 833, 54	4.7	103	

212	The Neutral Hydrogen Cosmological Mass Density at $z = 5$. Proceedings of the International Astronomical Union, 2016 , 11, 309-314	0.1	1
211	The Bright Symbiotic Mira EF Aquilae. <i>Publications of the Astronomical Society of the Pacific</i> , 2016 , 128, 024201	5	5
210	THE UV-BRIGHT QUASAR SURVEY (UVQS): DR1. Astronomical Journal, 2016, 152, 25	4.9	19
209	MAPPING THE MOST MASSIVE OVERDENSITY THROUGH HYDROGEN (MAMMOTH). I. METHODOLOGY. <i>Astrophysical Journal</i> , 2016 , 833, 135	4.7	45
208	EARLY AND EXTENDED HELIUM REIONIZATION OVER MORE THAN 600 MILLION YEARS OF COSMIC TIME. <i>Astrophysical Journal</i> , 2016 , 825, 144	4.7	77
207	THE COSMIC EVOLUTION OF THE METALLICITY DISTRIBUTION OF IONIZED GAS TRACED BY LYMAN LIMIT SYSTEMS. <i>Astrophysical Journal</i> , 2016 , 833, 283	4.7	50
206	FIRST CONNECTION BETWEEN COLD GAS IN EMISSION AND ABSORPTION: CO EMISSION FROM A GALAXYâQUASAR PAIR. <i>Astrophysical Journal Letters</i> , 2016 , 820, L39	7.9	24
205	SHADOW OF A COLOSSUS: Az= 2.44 GALAXY PROTOCLUSTER DETECTED IN 3D LyEOREST TOMOGRAPHIC MAPPING OF THE COSMOS FIELD. <i>Astrophysical Journal</i> , 2016 , 817, 160	4.7	49
204	Nature and statistical properties of quasar associated absorption systems in the XQ-100 Legacy Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 462, 3285-3301	4.3	27
203	A giant protogalactic disk linked to the cosmic web. <i>Nature</i> , 2015 , 524, 192-5	50.4	60
202	Dusting off the diffuse interstellar bands: DIBs and dust in extragalactic Sloan Digital Sky Survey spectra. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 545-558	4.3	19
201	Directly imaging damped Ly $\frac{1}{2}$ galaxies at $z > 2$ \hat{a} III. The star formation rates of neutral gas reservoirs at $z \sim 2.7$. Monthly Notices of the Royal Astronomical Society, 2015 , 446, 3178-3198	4.3	58
200	Galaxy evolution. Quasar quartet embedded in giant nebula reveals rare massive structure in distant universe. <i>Science</i> , 2015 , 348, 779-83	33.3	142
199	Data Reduction with the MIKE Spectrometer. <i>Publications of the Astronomical Society of the Pacific</i> , 2015 , 127, 911-930	5	19
198	UNVEILING THE SECRETS OF METALLICITY AND MASSIVE STAR FORMATION USING DLAS ALONG GAMMA-RAY BURSTS. <i>Astrophysical Journal</i> , 2015 , 804, 51	4.7	50
197	A DEEP NARROWBAND IMAGING SEARCH FOR C iv AND He ii EMISSION FROM Ly B LOBS. <i>Astrophysical Journal</i> , 2015 , 804, 26	4.7	34
196	DISSECTING THE GASEOUS HALOS OFz~ 2 DAMPED LyBYSTEMS WITH CLOSE QUASAR PAIRS. Astrophysical Journal, 2015 , 808, 38	4.7	39
195	iPTF14yb: THE FIRST DISCOVERY OF A GAMMA-RAY BURST AFTERGLOW INDEPENDENT OF A HIGH-ENERGY TRIGGER. <i>Astrophysical Journal Letters</i> , 2015 , 803, L24	7.9	37

194	THE FIRST DATA RELEASE OF THE KODIAQ SURVEY. Astronomical Journal, 2015, 150, 111	4.9	56
193	DEEP HE II AND C IV SPECTROSCOPY OF A GIANT LYNEBULA: DENSE COMPACT GAS CLUMPS IN THE CIRCUMGALACTIC MEDIUM OF Az~ 2 QUASAR. <i>Astrophysical Journal</i> , 2015 , 809, 163	4.7	53
192	HAPPY BIRTHDAYSWIFT: ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW. Astrophysical Journal, 2015 , 812, 122	4.7	13
191	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C iv ABSORBERS. II. PROGRAM DESIGN, ABSORPTION-LINE MEASUREMENTS, AND ABSORBER STATISTICS. <i>Astrophysical Journal</i> , 2015 , 815, 91	4.7	29
190	THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. III. SAMPLE DEFINITION AND COLUMN DENSITY MEASUREMENTS. <i>Astrophysical Journal, Supplement Series</i> , 2015 , 221, 2	8	32
189	The chemistry of the most metal-rich damped Lyman Bystems atz I-12 âII. Context with the Local Group. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 4326-4346	4.3	25
188	A detailed study of the optical attenuation of gamma-ray bursts in the Swift era. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 2919-2936	4.3	20
187	The neutral hydrogen cosmological mass density atz= 5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 217-234	4.3	113
186	The first ultraviolet quasar-stacked spectrum at z ? 2.4 from WFC3. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 449, 4204-4220	4.3	157
185	Using Machine Learning to classify the diffuse interstellar bands. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 451, 332-352	4.3	14
184	Metal-enriched, subkiloparsec gas clumps in the circumgalactic medium of a faint $z \not\models \mathbb{D}$.5 galaxy?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 446, 18-37	4.3	89
183	A search for H⊞mission in high-metallicity damped Lyman ⊞ystems at z⊡2.4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 448, 2832-2839	4.3	4
182	Cold gas and a Milky Way-type 2175-Ibump in a metal-rich and highly depleted absorption system. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 454, 1751-1766	4.3	23
181	PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT. <i>Astrophysical Journal</i> , 2015 , 800, 7	4.7	31
180	The Most Metal-rich Damped Ly Systems atz 11.5 I: The Data. <i>Publications of the Astronomical Society of the Pacific</i> , 2015 , 127, 167-210	5	12
179	Time variations of narrow absorption lines in high resolution quasar spectra. <i>Astronomy and Astrophysics</i> , 2015 , 581, A109	5.1	9
178	A cosmic web filament revealed in Lyman-Æmission around a luminous high-redshift quasar. <i>Nature</i> , 2014 , 506, 63-6	50.4	225
177	A BUDGET AND ACCOUNTING OF METALS ATz~ 0: RESULTS FROM THE COS-HALOS SURVEY. Astrophysical Journal, 2014 , 786, 54	4.7	217

176	The host of the SN-less GRB 060505 in high resolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 2034-2048	4.3	36
175	The nature of massive black hole binary candidates âll. Spectral energy distribution atlas. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 441, 316-332	4.3	8
174	IDENTIFYING HIGH-REDSHIFT GAMMA-RAY BURSTS WITH RATIR. Astronomical Journal, 2014, 148, 2	4.9	7
173	LYFOREST TOMOGRAPHY FROM BACKGROUND GALAXIES: THE FIRST MEGAPARSEC-RESOLUTION LARGE-SCALE STRUCTURE MAP AT z > 2. <i>Astrophysical Journal Letters</i> , 2014 , 795, L12	7.9	57
172	REVERBERATION MAPPING OF THEKEPLERFIELD AGN KA1858+4850. <i>Astrophysical Journal</i> , 2014 , 795, 38	4.7	25
171	The spin temperature of high-redshift damped Lyman Bystems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 2131-2166	4.3	87
170	Towards a unified description of the intergalactic medium at redshift z âl 2.5. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 476-486	4.3	44
169	Discovery of a transparent sightline at \square 20 kpc from an interacting pair of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 438, 3039-3048	4.3	15
168	Directly imaging damped Lytgalaxies at z D 2 âll. Imaging and spectroscopic observations of 32 quasar fields. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 444, 1282-1300	4.3	30
167	The Giant Gemini GMOS survey of zem > 4.4 quasars âll. Measuring the mean free path across cosmic time. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 1745-1760	4.3	118
166	A trio of gamma-ray burst supernovae:. Astronomy and Astrophysics, 2014, 568, A19	5.1	55
165	QUASARS PROBING QUASARS. VII. THE PINNACLE OF THE COOL CIRCUMGALACTIC MEDIUM SURROUNDS MASSIVEz~ 2 GALAXIES. <i>Astrophysical Journal</i> , 2014 , 796, 140	4.7	84
164	THE COS-HALOS SURVEY: PHYSICAL CONDITIONS AND BARYONIC MASS IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM. <i>Astrophysical Journal</i> , 2014 , 792, 8	4.7	379
163	THE RAPID DECLINE IN METALLICITY OF DAMPED Ly SYSTEMS AT z ~ 5. Astrophysical Journal Letters, 2014 , 782, L29	7.9	93
162	EVIDENCE FOR UBIQUITOUS COLLIMATED GALACTIC-SCALE OUTFLOWS ALONG THE STAR-FORMING SEQUENCE ATz~ 0.5. <i>Astrophysical Journal</i> , 2014 , 794, 156	4.7	213
161	CONFRONTING SIMULATIONS OF OPTICALLY THICK GAS IN MASSIVE HALOS WITH OBSERVATIONS ATz= 2-3. <i>Astrophysical Journal</i> , 2014 , 780, 74	4.7	56
160	GALACTIC AND CIRCUMGALACTIC O VI AND ITS IMPACT ON THE COSMOLOGICAL METAL AND BARYON BUDGETS AT 2 . <i>Astrophysical Journal</i> , 2014 , 788, 119	4.7	78
159	THE COS-DWARFS SURVEY: THE CARBON RESERVOIR AROUND SUB-L* GALAXIES. <i>Astrophysical Journal</i> , 2014 , 796, 136	4.7	160

158	Constraints on the gas masses of low-z damped Lyman Bystems. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> , 2014 , 443, L29-L33	4.3	2
157	THE ROLE OF STELLAR FEEDBACK IN THE DYNAMICS OF H II REGIONS. <i>Astrophysical Journal</i> , 2014 , 795, 121	4.7	80
156	THE COS-HALOS SURVEY: RATIONALE, DESIGN, AND A CENSUS OF CIRCUMGALACTIC NEUTRAL HYDROGEN. <i>Astrophysical Journal</i> , 2013 , 777, 59	4.7	244
155	A refined measurement of the mean transmitted flux in the LyHorest over 2 Monthly Notices of the Royal Astronomical Society, 2013 , 430, 2067-2081	4.3	121
154	A high molecular fraction in a subdamped absorber at z 0.56?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 433, 178-193	4.3	21
153	A search for boron in damped LyBystems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 434, 2892-2906	4.3	7
152	AN EXPLANATION FOR THE DIFFERENT X-RAY TO OPTICAL COLUMN DENSITIES IN THE ENVIRONMENTS OF GAMMA RAY BURSTS: A PROGENITOR EMBEDDED IN A DENSE MEDIUM. Astrophysical Journal, 2013 , 774, 115	4.7	14
151	THE FIRM REDSHIFT LOWER LIMIT OF THE MOST DISTANT TeV-DETECTED BLAZAR PKS 1424+240. Astrophysical Journal Letters, 2013 , 768, L31	7.9	56
150	THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM. <i>Astrophysical Journal, Supplement Series</i> , 2013 , 204, 17	8	231
149	METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A $z=2.4$ STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION?. Astrophysical Journal Letters, 2013 , 776, L18	7.9	62
148	QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION. <i>Astrophysical Journal</i> , 2013 , 766, 58	4.7	79
147	QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION. <i>Astrophysical Journal</i> , 2013 , 767, 49	4.7	65
146	A SUBSTANTIAL MASS OF COOL, METAL-ENRICHED GAS SURROUNDING THE PROGENITORS OF MODERN-DAY ELLIPTICALS. <i>Astrophysical Journal Letters</i> , 2013 , 762, L19	7.9	77
145	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. <i>Astrophysical Journal</i> , 2013 , 778, 128	4.7	139
144	THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM ATz? 1. <i>Astrophysical Journal</i> , 2013 , 770, 138	4.7	154
143	THE FUNDAMENTAL PLANE OF DAMPED Ly&YSTEMS. Astrophysical Journal, 2013 , 769, 54	4.7	91
142	A DEEP SEARCH FOR FAINT GALAXIES ASSOCIATED WITH VERY LOW-REDSHIFT C IV ABSORBERS: A CASE WITH COLD-ACCRETION CHARACTERISTICS. <i>Astrophysical Journal Letters</i> , 2013 , 779, L17	7.9	19
141	ON THE REDSHIFT OF THE VERY HIGH ENERGY BLAZAR 3C 66A. <i>Astrophysical Journal</i> , 2013 , 766, 35	4.7	26

140	DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY. <i>Astrophysical Journal</i> , 2013 , 775, 78	4.7	73
139	PRECIOUS METALS IN SDSS QUASAR SPECTRA. II. TRACKING THE EVOLUTION OF STRONG, 0.4 . <i>Astrophysical Journal</i> , 2013 , 779, 161	4.7	26
138	AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?. <i>Astrophysical Journal</i> , 2013 , 773, 82	4.7	11
137	GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY. <i>Astrophysical Journal</i> , 2013 , 777, 94	4.7	31
136	QUASARS PROBING QUASARS. VI. EXCESS H I ABSORPTION WITHIN ONE PROPER Mpc OFz~ 2 QUASARS. <i>Astrophysical Journal</i> , 2013 , 776, 136	4.7	99
135	THE HIGH-ION CONTENT AND KINEMATICS OF LOW-REDSHIFT LYMAN LIMIT SYSTEMS. Astrophysical Journal, 2013 , 778, 187	4.7	25
134	THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES ATz~ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS. <i>Astrophysical Journal</i> , 2013 , 765, 89	4.7	152
133	FLASHLIGHT: Fluorescent Lyman-Alpha Survey of cosmic Hydrogen iLlumInated by hIGH-redshifT quasars <i>Proceedings of the International Astronomical Union</i> , 2013 , 9, 253-256	0.1	
132	PRECIOUS METALS IN SDSS QUASAR SPECTRA. I. TRACKING THE EVOLUTION OF STRONG, 1.5 . <i>Astrophysical Journal</i> , 2013 , 763, 37	4.7	48
131	THEHST/ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE. <i>Astrophysical Journal</i> , 2013 , 765, 137	4.7	68
130	H i content, metallicities and spin temperatures of damped and sub-damped LyBystems in the redshift desert (0.6 Monthly Notices of the Royal Astronomical Society, 2012 , 424, 293-312	4.3	32
129	A search of CO emission lines in blazars: the low molecular gas content of BL Lac objects compared to quasars. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 2276-2283	4.3	13
128	METALLICITY EVOLUTION OF DAMPED Ly SYSTEMS OUT TOz~ 5. Astrophysical Journal, 2012, 755, 89	4.7	250
127	magicc haloes: confronting simulations with observations of the circumgalactic medium at z=0. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 1270-1277	4.3	112
126	An empirical relation between sodium absorption and dust extinction. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1465-1474	4.3	244
125	Performance and calibration of H2RG detectors and SIDECAR ASICs for the RATIR camera 2012 ,		12
124	Software solution for autonomous observations with H2RG detectors and SIDECAR ASICs for the RATIR camera 2012 ,		3
123	Automation of the OAN/SPM 1.5-meter Johnson telescope for operations with RATIR 2012 ,		24

122	On the redshift of the blazar PKSID447-439. Astronomy and Astrophysics, 2012, 545, A68	5.1	7
121	THE DIRECT DETECTION OF COOL, METAL-ENRICHED GAS ACCRETION ONTO GALAXIES AT z \sim 0.5. Astrophysical Journal Letters, 2012 , 747, L26	7.9	119
120	First Light with RATIR: An Automated 6-band Optical/NIR Imaging Camera 2012,		34
119	THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 198, 3	8	70
118	Keck 1 deployable tertiary mirror (K1DM3) 2012 ,		1
117	VERITAS OBSERVATIONS OF SIX BRIGHT, HARD-SPECTRUMFERMI-LAT BLAZARS. <i>Astrophysical Journal</i> , 2012 , 759, 102	4.7	6
116	A METAL-STRONG AND DUST-RICH DAMPED Ly BSORPTION SYSTEM TOWARD THE QUASAR SDSS J115705.52+615521.7. <i>Astrophysical Journal</i> , 2012 , 760, 42	4.7	21
115	THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly&YSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH: CHEMICAL ABUNDANCES AND AFFILIATED GALAXIES. <i>Astrophysical Journal</i> , 2012 , 744, 93	4.7	54
114	NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES. <i>Astrophysical Journal Letters</i> , 2012 , 758, L41	7.9	114
113	Detection of pristine gas two billion years after the Big Bang. <i>Science</i> , 2011 , 334, 1245-9	33.3	126
112	WHAT DRIVES THE EXPANSION OF GIANT H II REGIONS?: A STUDY OF STELLAR FEEDBACK IN 30 DORADUS. <i>Astrophysical Journal</i> , 2011 , 731, 91	4.7	140
111	THE GASâtGALAXY CONNECTION ATzabs= 0.35: O VI AND H I ABSORPTION TOWARD J 0943+0531. Astrophysical Journal, 2011 , 736, 1	4.7	54
110	SIMPLE MODELS OF METAL-LINE ABSORPTION AND EMISSION FROM COOL GAS OUTFLOWS. <i>Astrophysical Journal</i> , 2011 , 734, 24	4.7	92
109	MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE. <i>Astrophysical Journal</i> , 2011 , 743, 26	4.7	40
108	SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A âGREEN VALLEYâ「GALAXY. <i>Astrophysical Journal</i> , 2011 , 735, 54	4.7	7
107	A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS. <i>Astrophysical Journal</i> , 2011 , 727, 73	4.7	35
106	LOW-IONIZATION LINE EMISSION FROM A STARBURST GALAXY: A NEW PROBE OF A GALACTIC-SCALE OUTFLOW. <i>Astrophysical Journal</i> , 2011 , 728, 55	4.7	80
105	GALEXFAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS. Astrophysical Journal, 2011 , 728, 23	4.7	67

104	THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC SI IV EVOLUTION. <i>Astrophysical Journal</i> , 2011 , 729, 87	4.7	14
103	THE END OF HELIUM REIONIZATION AT z ? 2.7 INFERRED FROM COSMIC VARIANCE IN HST /COS He II LyFABSORPTION SPECTRA. <i>Astrophysical Journal Letters</i> , 2011 , 733, L24	7.9	80
102	AFTERGLOW OBSERVATIONS OFFERMILARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS. <i>Astrophysical Journal</i> , 2011 , 732, 29	4.7	116
101	CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP. <i>Astrophysical Journal</i> , 2011 , 743, 154	4.7	54
100	PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF LyFAND O VI ABSORPTION ATzAstrophysical Journal, 2011 , 740, 91	4.7	217
99	MULTIWAVELENGTH OBSERVATIONS OF THE PREVIOUSLY UNIDENTIFIED BLAZAR RX J0648.7+1516. <i>Astrophysical Journal</i> , 2011 , 742, 127	4.7	25
98	EVIDENCE FOR COLD ACCRETION: PRIMITIVE GAS FLOWING ONTO A GALAXY ATz~ 0.274. Astrophysical Journal, 2011 , 743, 207	4.7	90
97	SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286. Astrophysical Journal, 2011 , 733, 24	4.7	5
96	MULTIPHASE GAS IN GALAXY HALOS: THE O vi LYMAN-LIMIT SYSTEM TOWARD J1009+0713*. Astrophysical Journal, 2011 , 733, 111	4.7	62
95	THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH. <i>Astrophysical Journal</i> , 2011 , 732, 35	4.7	68
94	Metallicities and dust content of proximate damped Lyman Bystems in the Sloan Digital Sky Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 412, 448-468	4.3	19
93	A faint optical flash in dust-obscured GRB 080603A: implications for GRB prompt emission mechanisms. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 417, 2124-2143	4.3	28
92	Absorption-line systems in simulated galaxies fed by cold streams. <i>Monthly Notices of the Royal Astronomical Society</i> , 2011 , 418, 1796-1821	4.3	233
91	The hidden mass and large spatial extent of a post-starburst galaxy outflow. <i>Science</i> , 2011 , 334, 952-5	33.3	120
90	THE ADVANCED CAMERA FOR SURVEYS+WIDE FIELD CAMERA 3 SURVEY FOR LYMAN LIMIT SYSTEMS. I. THE DATA. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 195, 16	8	7
89	MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT. <i>Astronomical Journal</i> , 2011 , 141, 36	4.9	56
88	PROBING THE IGM/GALAXY CONNECTION. IV. THE LCO/WFCCD GALAXY SURVEY OF 20 FIELDS SURROUNDING UV-BRIGHT QUASARS. <i>Astrophysical Journal, Supplement Series</i> , 2011 , 193, 28	8	40
87	The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals. <i>Science</i> , 2011 , 334, 948-52	33.3	380

(2010-2010)

86	Directly imaging damped Lyman \Box galaxies at $z > 2$ \Box l. Methodology and first results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 362-382	4.3	33
85	Ionization corrections in a multiphase interstellar medium: lessons from a zabs~ 2 sub-DLA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 408, 2071-2082	4.3	20
84	A high-velocity narrow absorption line outflow in the quasar J212329.46 â[005052.9. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	59
83	GRB® 090426: the environment of a rest-frame 0.35-s gamma-ray burst at a redshift of 2.609. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 401, 963-972	4.3	71
82	Keck telescope constraint on cosmological variation of the proton-to-electron mass ratio. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , 403, 1541-1555	4.3	85
81	Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at z~ 5. <i>Monthly Notices of the Royal Astronomical Society,</i> 2010 , 406, 2473-2487	4.3	65
80	The nature of proximate damped Lyman Bystems?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2010 , no-no	4.3	28
79	HIGH DUST DEPLETION IN TWO INTERVENING QUASAR ABSORPTION LINE SYSTEMS WITH THE 2175 EXTINCTION BUMP ATz~ 1.4. <i>Astrophysical Journal</i> , 2010 , 724, 1325-1335	4.7	15
78	UNDERSTANDING PHYSICAL CONDITIONS IN HIGH-REDSHIFT GALAXIES THROUGH C I FINE STRUCTURE LINES: DATA AND METHODOLOGY. <i>Astrophysical Journal</i> , 2010 , 722, 460-490	4.7	50
77	GALAXIES PROBING GALAXIES: COOL HALO GAS FROM Az= 0.47 POST-STARBURST GALAXY. <i>Astrophysical Journal</i> , 2010 , 712, 574-584	4.7	39
76	NEW OBSERVATIONS OF THE VERY LUMINOUS SUPERNOVA 2006gy: EVIDENCE FOR ECHOES. <i>Astronomical Journal</i> , 2010 , 139, 2218-2229	4.9	35
75	HIColumn Densities, Metallicities, and Dust Extinction of Metal-Strong Damped Ly Systems 1. <i>Publications of the Astronomical Society of the Pacific</i> , 2010 , 122, 619-635	5	38
74	THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC C IV EVOLUTION. <i>Astrophysical Journal</i> , 2010 , 708, 868-908	4.7	56
73	WAVELENGTH ACCURACY OF THE KECK HIRES SPECTROGRAPH AND MEASURING CHANGES IN THE FINE STRUCTURE CONSTANT. <i>Astrophysical Journal</i> , 2010 , 708, 158-170	4.7	75
72	THE PERSISTENCE OF COOL GALACTIC WINDS IN HIGH STELLAR MASS GALAXIES BETWEENz~ 1.4 AND ~1. <i>Astrophysical Journal</i> , 2010 , 719, 1503-1525	4.7	144
71	COSMOLOGICAL CONCORDANCE OR CHEMICAL COINCIDENCE? DEUTERATED MOLECULAR HYDROGEN ABUNDANCES AT HIGH REDSHIFT. <i>Astrophysical Journal Letters</i> , 2010 , 718, L156-L160	7.9	34
70	THE KECK + MAGELLAN SURVEY FOR LYMAN LIMIT ABSORPTION. II. A CASE STUDY ON METALLICITY VARIATIONS. <i>Astrophysical Journal</i> , 2010 , 708, 1221-1237	4.7	31
69	KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Ly ll SYSTEMS. <i>Astrophysical Journal</i> , 2010 , 721, 1-25	4.7	61

68	PROBING FUNDAMENTAL CONSTANT EVOLUTION WITH NEUTRAL ATOMIC GAS LINES. <i>Astrophysical Journal Letters</i> , 2010 , 712, L148-L152	7.9	23
67	Mechanical configurations for the reionization and transients infrared camera (RATIR) 2010 ,		2
66	A DUSTY Mg II ABSORBER ASSOCIATED WITH THE QUASAR SDSS J003545.13+011441.2. Astrophysical Journal, 2010 , 720, 328-336	4.7	16
65	A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS ATz~ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY. <i>Astrophysical Journal</i> , 2010 , 718, 392-416	4.7	132
64	A DIRECT MEASUREMENT OF THE INTERGALACTIC MEDIUM OPACITY TO H I IONIZING PHOTONS. <i>Astrophysical Journal</i> , 2009 , 705, L113-L117	4.7	112
63	Metal-enriched plasma in protogalactic halos. <i>Astronomy and Astrophysics</i> , 2009 , 503, 731-746	5.1	33
62	AN IMAGING AND SPECTROSCOPIC STUDY OF FOUR STRONG Mg II ABSORBERS REVEALED BY GRB 060418. <i>Astrophysical Journal</i> , 2009 , 701, 1605-1615	4.7	16
61	QUASARS PROBING QUASARS. III. NEW CLUES TO FEEDBACK, QUENCHING, AND THE PHYSICS OF MASSIVE GALAXY FORMATION. <i>Astrophysical Journal</i> , 2009 , 690, 1558-1584	4.7	92
60	AN OBSERVATIONAL DETERMINATION OF THE PROTON TO ELECTRON MASS RATIO IN THE EARLY UNIVERSE. <i>Astrophysical Journal</i> , 2009 , 703, 1648-1662	4.7	51
59	THE HOST GALAXIES OFSWIFTDARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs. <i>Astronomical Journal</i> , 2009 , 138, 1690-1708	4.9	153
58	LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS. <i>Astrophysical Journal, Supplement Series</i> , 2009 , 185, 526-573	8	276
57	Metal-line system survey: characterizing the low-redshift IGM. <i>Astrophysics and Space Science</i> , 2009 , 320, 31-34	1.6	
56	A search for H i 21 cm absorption in strong Mg ii absorbers in the redshift desert. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 385-401	4.3	52
55	Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 400, 134-146	4.3	43
54	Strong z \sim 0.5 O vi absorption towards PKS 0405â $\bar{1}$ 23: implications for ionization and metallicity of the Cosmic Web?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 396, 1875-1894	4.3	33
53	A survey of ultraviolet-bright sources behind the halo of M31. <i>Monthly Notices of the Royal Astronomical Society</i> , 2009 , 399, 728-736	4.3	2
52	MASE: A New Data-Reduction Pipeline for the Magellan Echellette Spectrograph. <i>Publications of the Astronomical Society of the Pacific</i> , 2009 , 121, 1409-1418	5	88
51	OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION. <i>Astrophysical Journal</i> , 2009 , 691, 723-737	4.7	119

(2008-2009)

50	ON THE (NON)EVOLUTION OF HIGAS IN GALAXIES OVER COSMIC TIME. <i>Astrophysical Journal</i> , 2009 , 696, 1543-1547	4.7	258
49	A z = 3 LyBLOB ASSOCIATED WITH A DAMPED LyBYSTEM PROXIMATE TO ITS BACKGROUND QUASAR. <i>Astrophysical Journal</i> , 2009 , 693, L49-L55	4.7	47
48	DUST EXTINCTION IN HIGH-zGALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 FEATURE ATz= 2.45. <i>Astrophysical Journal</i> , 2009 , 697, 1725-1740	4.7	119
47	THE CONNECTION BETWEEN A LYMAN LIMIT SYSTEM, A VERY STRONG O VI ABSORBER, AND GALAXIES ATz~ 0.203. <i>Astrophysical Journal</i> , 2009 , 694, 734-750	4.7	43
46	MOLECULAR HYDROGEN DEFICIENCY IN H I-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION. <i>Astrophysical Journal</i> , 2009 , 697, 1811-1821	4.7	83
45	ON THE ABSENCE OF HIGH METALLICITY-HIGH COLUMN DENSITY DAMPED Ly SYSTEMS: MOLECULE FORMATION IN A TWO-PHASE INTERSTELLAR MEDIUM. <i>Astrophysical Journal</i> , 2009 , 701, L12-L15	4.7	35
44	DIRECT EVIDENCE OF COLD GAS IN DLA 0812+32B. Astrophysical Journal, 2009, 704, 247-254	4.7	38
43	GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION. <i>Astrophysical Journal</i> , 2009 , 696, 1871-1885	4.7	141
42	THE DISCOVERY OF VIBRATIONALLY EXCITED H 2 IN THE MOLECULAR CLOUD NEAR GRB 080607. Astrophysical Journal, 2009 , 701, L63-L67	4.7	30
41	FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITHSWIFTX-RAY TRANSIENT 080109. **Astrophysical Journal**, 2009 , 702, 226-248	4.7	191
40	CASTING LIGHT ON THE âMNOMALOUSâMTATISTICS OF Mg II ABSORBERS TOWARD GAMMA-RAY BURST AFTERGLOWS: THE INCIDENCE OF WEAK SYSTEMS. <i>Astrophysical Journal</i> , 2009 , 706, 1309-1315	4.7	24
39	THE FIRST POSITIVE DETECTION OF MOLECULAR GAS IN A GRB HOST GALAXY. <i>Astrophysical Journal</i> , 2009 , 691, L27-L32	4.7	147
38	Probing feedback in protogalaxies: multiphase gas in a DLA atzâl 2.4. <i>Monthly Notices of the Royal Astronomical Society</i> , 2008 , 390, 2-20	4.3	21
37	GRB 071003: Broadband Follow-up Observations of a Very Bright Gamma-Ray Burst in a Galactic Halo. <i>Astrophysical Journal</i> , 2008 , 688, 470-490	4.7	52
36	Reconciling the Metallicity Distributions of Gamma-ray Burst, Damped Lyman-Ḥand Lyman-break Galaxies at z âB. <i>Proceedings of the International Astronomical Union</i> , 2008 , 4, 41-48	0.1	1
35	Large Excess of Heavy Nitrogen in Both Hydrogen Cyanide and Cyanogen from Comet 17P/Holmes. <i>Astrophysical Journal</i> , 2008 , 679, L49-L52	4.7	101
34	The Troublesome Broadband Evolution of GRB 061126: Does a Gray Burst Imply Gray Dust?. <i>Astrophysical Journal</i> , 2008 , 672, 449-464	4.7	100
33	The color excess of quasars with intervening DLA systems. <i>Astronomy and Astrophysics</i> , 2008 , 478, 701-7	755	52

32	Emergence of a quasar outflow. Monthly Notices of the Royal Astronomical Society: Letters, 2008,	4.3	9
31	Comprehensive Abundance Measurements in Damped Ly Bystems 2008, 69-72		
30	Reconciling the Metallicity Distributions of Gamma-Ray Burst, Damped Ly⊞and Lyman Break Galaxies atzâB. <i>Astrophysical Journal</i> , 2008 , 683, 321-328	4.7	125
29	A new comprehensive set of elemental abundances in DLAs. Astronomy and Astrophysics, 2007, 470, 431	l- ⊴ 148	44
28	A Putative Early-Type Host Galaxy for GRB 060502B: Implications for the Progenitors of Short-Duration Hard-Spectrum Bursts. <i>Astrophysical Journal</i> , 2007 , 654, 878-884	4.7	61
27	The Interstellar Medium of Gamma-Ray Burst Host Galaxies. I. Echelle Spectra of Swift GRB Afterglows. <i>Astrophysical Journal, Supplement Series</i> , 2007 , 168, 231-267	8	63
26	Constraints on the Diverse Progenitors of GRBs from the Large-Scale Environments. <i>AIP Conference Proceedings</i> , 2006 ,	О	9
25	A new comprehensive set of elemental abundances in DLAs. Astronomy and Astrophysics, 2006, 445, 93-	151.3	81
24	Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b. <i>Astrophysical Journal</i> , 2006 , 638, 354-368	4.7	244
23	The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts. <i>Astrophysical Journal</i> , 2006 , 642, 989-994	4.7	90
22	GRB 050408: A Bright Gamma-Ray Burst Probing an Atypical Galactic Environment. <i>Astrophysical Journal</i> , 2006 , 645, 450-463	4.7	22
21	When Do Internal Shocks End and External Shocks Begin? Early-Time Broadband Modeling of GRB 051111. <i>Astrophysical Journal</i> , 2006 , 652, 1390-1399	4.7	30
20	Hypernova Signatures in the Late Rebrightening of GRB 050525A. Astrophysical Journal, 2006, 642, L103	34L /1 06	75
19	High-metallicity, photoionized gas in intergalactic large-scale filaments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2006 , 367, 139-155	4.3	35
18	Detection of the 2175 dust feature from The Sloan Digital Sky Survey first and second data releases. <i>Proceedings of the International Astronomical Union</i> , 2005 , 1, 331-336	0.1	
17	An infrared flash contemporaneous with the gamma-rays of GRB 041219a. <i>Nature</i> , 2005 , 435, 181-4	50.4	90
16	A comprehensive set of elemental abundances in damped LyBystems: Revealing the nature of these high-redshift galaxies. <i>Astronomy and Astrophysics</i> , 2004 , 416, 79-110	5.1	75
15	Damped Lyman alpha systems and galaxy formation models - II. High ions and Lyman-limit systems. <i>Monthly Notices of the Royal Astronomical Society</i> , 2003 , 343, 268-278	4.3	32

LIST OF PUBLICATIONS

14	New detections of Mn, Ti and Mg in damped LyBystems: Toward reconciling the dust/nucleosynthesis degeneracy. <i>Astronomy and Astrophysics</i> , 2002 , 391, 801-807	5.1	29
13	Metal abundances and ionization conditions in a possibly dust-free damped LyBystem at \$mathsf{vec{z}=2.3}\$. <i>Astronomy and Astrophysics</i> , 2002 , 385, 778-792	5.1	65
12	Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 327, 1208-1222	4.3	272
11	Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 327, 1223-1236	4.3	103
10	Further constraints on variation of the fine-structure constant from alkali-doublet QSO absorption lines. <i>Monthly Notices of the Royal Astronomical Society</i> , 2001 , 327, 1237-1243	4.3	109
9	Further evidence for cosmological evolution of the fine structure constant. <i>Physical Review Letters</i> , 2001 , 87, 091301	7.4	588
8	Damped Lya systems at high redshift and models of protogalactic discs. <i>Monthly Notices of the Royal Astronomical Society</i> , 1998 , 296, 430-436	4.3	22
7	A MUltiwavelength Study of ELAN Environment (AMUSE2). Ubiquitous dusty star-forming galaxies associated with enormous Lyalpha nebulae on megaparsec scales. <i>Astronomy and Astrophysics</i> ,	5.1	1
6	The fast radio burst population evolves, consistent with the star-formation rate. <i>Monthly Notices of the Royal Astronomical Society: Letters</i> ,	4.3	13
5	The zâ D M distribution of fast radio bursts. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	9
4	MUSE searches for galaxies near very metal-poor gas clouds at z \sim 3: new constraints for cold accretion models		1
3	Anomaly detection in Hyper Suprime-Cam galaxy images with generative adversarial networks. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	6
2	A [C ii] 158 th emitter associated with an O i absorber at the end of the reionization epoch. <i>Nature Astronomy</i> ,	12.1	1
1	Metal-enriched halo gas across galaxy overdensities over the last 10 billion years. <i>Monthly Notices of the Royal Astronomical Society</i> ,	4.3	3