
## Brian Tarroja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6098011/publications.pdf Version: 2024-02-01



**Β**ΡΙΔΝΙ ΤΔΡΡΟΙΔ

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research. Energy, 2022, 238, 122049.                                                                | 4.5 | 20        |
| 2  | Potential Health Impact Assessment of Large-Scale Production of Batteries for the Electric Grid.<br>Minerals, Metals and Materials Series, 2022, , 417-425.                                                                      | 0.3 | 3         |
| 3  | Techno-Economic Analysis of Material Costs for Emerging Flow Batteries. Minerals, Metals and Materials Series, 2022, , 449-460.                                                                                                  | 0.3 | 1         |
| 4  | Advancing chemical hazard assessment with decision analysis: A case study on lithium-ion and redox flow batteries used for energy storage. Journal of Hazardous Materials, 2022, 437, 129301.                                    | 6.5 | 5         |
| 5  | The value of consumer acceptance of controlled electric vehicle charging in a decarbonizing grid:<br>The case of California. Energy, 2021, 229, 120691.                                                                          | 4.5 | 27        |
| 6  | Environmental benefit-detriment thresholds for flow battery energy storage systems: A case study in<br>California. Applied Energy, 2021, 300, 117354.                                                                            | 5.1 | 10        |
| 7  | Determining cost-optimal approaches for managing excess renewable electricity in decarbonized electricity systems. Renewable Energy, 2021, 178, 1187-1197.                                                                       | 4.3 | 18        |
| 8  | Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. Journal of Hydrology, 2020, 580, 123922.                                                                                                 | 2.3 | 78        |
| 9  | Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China. Applied Energy, 2020, 279, 115694.                              | 5.1 | 55        |
| 10 | Flow battery production: Materials selection and environmental impact. Journal of Cleaner<br>Production, 2020, 269, 121740.                                                                                                      | 4.6 | 48        |
| 11 | How do non-carbon priorities affect zero-carbon electricity systems? A case study of freshwater consumption and cost for Senate Bill 100 compliance in California. Applied Energy, 2020, 265, 114824.                            | 5.1 | 16        |
| 12 | Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy<br>duty sectors in California. Applied Energy, 2020, 276, 115439.                                                       | 5.1 | 85        |
| 13 | Implications of hydropower variability from climate change for a future, highly-renewable electric grid in California. Applied Energy, 2019, 237, 353-366.                                                                       | 5.1 | 40        |
| 14 | Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions. Applied Energy, 2019, 235, 284-298.                                                                            | 5.1 | 52        |
| 15 | Assessing climate change impacts on California hydropower generation and ancillary services provision. Climatic Change, 2018, 151, 395-412.                                                                                      | 1.7 | 34        |
| 16 | Comparing the emissions benefits of centralized vs. decentralized electric vehicle smart charging<br>approaches: A case study of the year 2030 California electric grid. Journal of Power Sources, 2018, 401,<br>175-185.        | 4.0 | 43        |
| 17 | Translating climate change and heating system electrification impacts on building energy use to<br>future greenhouse gas emissions and electric grid capacity requirements in California. Applied Energy,<br>2018, 225, 522-534. | 5.1 | 59        |
| 18 | Assessing future water resource constraints on thermally based renewable energy resources in California. Applied Energy, 2018, 226, 49-60.                                                                                       | 5.1 | 18        |

Brian Tarroja

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems. Energy, 2018, 157, 460-471.                                                                                                                     | 4.5 | 14        |
| 20 | California drought increases CO2 footprint of energy. Sustainable Cities and Society, 2017, 28, 450-452.                                                                                                                                                          | 5.1 | 34        |
| 21 | A Comparison of Fuel Cell and Energy Storage Technologies' Potential to Reduce CO2 Emissions and<br>Meet Renewable Generation Goals. ECS Transactions, 2016, 71, 193-203.                                                                                         | 0.3 | 2         |
| 22 | Assessing the stationary energy storage equivalency of vehicle-to-grid charging battery electric vehicles. Energy, 2016, 106, 673-690.                                                                                                                            | 4.5 | 82        |
| 23 | Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards. Journal of Power Sources, 2016, 336, 63-74.                                                               | 4.0 | 72        |
| 24 | Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation. Energy, 2016, 111, 295-305.                                                                                                 | 4.5 | 99        |
| 25 | The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 – Design and operation implications for load-balancing resources on the electric grid. Journal of Power Sources, 2015, 278, 782-793. | 4.0 | 14        |
| 26 | The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies. Energy, 2015, 87, 504-519.                                                                                                           | 4.5 | 52        |
| 27 | Dispatch of fuel cells as Transmission Integrated Grid Energy Resources to support renewables and reduce emissions. Applied Energy, 2015, 148, 178-186.                                                                                                           | 5.1 | 12        |
| 28 | Evaluating options for balancing the water – electricity nexus in California: Part 2—Greenhouse gas<br>and renewable energy utilization impacts. Science of the Total Environment, 2014, 497-498, 711-724.                                                        | 3.9 | 31        |
| 29 | Advancing Toward Sustainability Goals at the University of California, Irvine. , 2014, , .                                                                                                                                                                        |     | 2         |
| 30 | The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic<br>environmental goals: Part 1 – Evaluation of aggregate energy and greenhouse gas performance.<br>Journal of Power Sources, 2014, 257, 461-470.                 | 4.0 | 26        |
| 31 | Evaluating options for Balancing the Water-Electricity Nexus in California: Part 1 – Securing Water<br>Availability. Science of the Total Environment, 2014, 497-498, 697-710.                                                                                    | 3.9 | 26        |
| 32 | Solar power variability and spatial diversification: implications from an electric grid load balancing perspective. International Journal of Energy Research, 2013, 37, 1002-1016.                                                                                | 2.2 | 22        |
| 33 | Exploration of the integration of renewable resources into California's electric system using the<br>Holistic Grid Resource Integration and Deployment (HiGRID) tool. Energy, 2013, 50, 353-363.                                                                  | 4.5 | 60        |
| 34 | Metrics for evaluating the impacts of intermittent renewable generation on utility load-balancing.<br>Energy, 2012, 42, 546-562.                                                                                                                                  | 4.5 | 63        |
| 35 | Spatial and temporal analysis of electric wind generation intermittency and dynamics. Renewable Energy, 2011, 36, 3424-3432.                                                                                                                                      | 4.3 | 57        |
| 36 | Design, Simulation and Control of a 100 MW-Class Solid Oxide Fuel Cell Gas Turbine Hybrid System.<br>Journal of Fuel Cell Science and Technology, 2010, 7, .                                                                                                      | 0.8 | 14        |

| #  | Article                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Parametric Thermodynamic Analysis of a Solid Oxide Fuel Cell Gas Turbine System Design Space.<br>Journal of Engineering for Gas Turbines and Power, 2010, 132, . | 0.5 | 31        |
| 38 | High Temperature Stationary Solid Oxide Fuel Cell Systems in the Renewable Future. , 2009, , .                                                                   |     | 0         |
| 39 | Parametric Thermodynamic Analysis of a Solid Oxide Fuel Cell Gas Turbine System Design Space. , 2008, ,                                                          |     | 3         |
| 40 | Design, Simulation, and Control of a 100 Megawatt-Class Solid Oxide Fuel Cell Gas Turbine Hybrid<br>System. , 2008, , .                                          |     | 2         |