Victor G Puelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6097374/publications.pdf

Version: 2024-02-01

110317 159525 4,689 67 30 64 citations h-index g-index papers 71 71 71 9160 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids. Cell Stem Cell, 2022, 29, 217-231.e8.	5.2	146
2	Kidneys control inter-organ homeostasis. Nature Reviews Nephrology, 2022, 18, 207-208.	4.1	5
3	Molecular consequences of SARS-CoV-2 liver tropism. Nature Metabolism, 2022, 4, 310-319.	5.1	98
4	The calcium-sensing receptor stabilizes podocyte function in proteinuric humans and mice. Kidney International, 2022, 101, 1186-1199.	2.6	6
5	The ability of remaining glomerular podocytes to adapt to the loss of their neighbours decreases with age. Cell and Tissue Research, 2022, 388, 439-451.	1.5	3
6	The Amphiregulin/EGFR axis protects from lupus nephritis via downregulation of pathogenic CD4+ T helper cell responses. Journal of Autoimmunity, 2022, 129, 102829.	3.0	5
7	Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathogens, 2022, 18, e1010430.	2.1	12
8	Loss of the collagen IV modifier prolyl 3-hydroxylase 2 causes thin basement membrane nephropathy. Journal of Clinical Investigation, 2022, 132, .	3.9	14
9	A protocol for rat kidney normothermic machine perfusion and subsequent transplantation. Artificial Organs, 2021, 45, 168-174.	1.0	3
10	Deep Learning-Based Bias Transfer for Overcoming Laboratory Differences of Microscopic Images. Lecture Notes in Computer Science, 2021, , 322-336.	1.0	1
11	Podometrics in Japanese Living Donor Kidneys: Associations with Nephron Number, Age, and Hypertension. Journal of the American Society of Nephrology: JASN, 2021, 32, 1187-1199.	3.0	13
12	Clonal expansion and activation of tissue-resident memory-like T $<$ sub $>$ H $<$ /sub $>$ 17 cells expressing GM-CSF in the lungs of patients with severe COVID-19. Science Immunology, 2021, 6, .	5.6	125
13	COVID-19–associated Nephropathy Includes Tubular Necrosis and Capillary Congestion, with Evidence of SARS-CoV-2 in the Nephron. Kidney360, 2021, 2, 639-652.	0.9	24
14	Deep learning–based molecular morphometrics for kidney biopsies. JCI Insight, 2021, 6, .	2.3	31
15	Pro-cachectic factors link experimental and human chronic kidney disease to skeletal muscle wasting programs. Journal of Clinical Investigation, 2021, 131, .	3.9	34
16	Convalescent plasma treatment for early postâ€kidney transplant acquired COVIDâ€19. Transplant Infectious Disease, 2021, 23, e13685.	0.7	5
17	Parietal epithelial cell dysfunction in crescentic glomerulonephritis. Cell and Tissue Research, 2021, 385, 345-354.	1.5	11
18	Podocyte endowment and the impact of adult body size on kidney health. American Journal of Physiology - Renal Physiology, 2021, 321, F322-F334.	1.3	10

#	Article	lF	Citations
19	Clearly imaging and quantifying the kidney in 3D. Kidney International, 2021, 100, 780-786.	2.6	21
20	Decoding myofibroblast origins in human kidney fibrosis. Nature, 2021, 589, 281-286.	13.7	380
21	Pathogen-induced tissue-resident memory T _H 17 (T _{RM} 17) cells amplify autoimmune kidney disease. Science Immunology, 2020, 5, .	5.6	58
22	SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet, The, 2020, 396, 597-598.	6.3	253
23	Proximal tubular dysfunction in patients with COVID-19: what have we learnt so far?. Kidney International, 2020, 98, 1092-1094.	2.6	17
24	Association of SARS-CoV-2 renal tropism with acute kidney injury – Authors' reply. Lancet, The, 2020, 396, 1881-1882.	6.3	5
25	Multiorgan and Renal Tropism of SARS-CoV-2. New England Journal of Medicine, 2020, 383, 590-592.	13.9	1,523
26	Cellular and Molecular Probing of Intact Human Organs. Cell, 2020, 180, 796-812.e19.	13.5	187
27	Dysregulated mesenchymal PDGFRâ€Î² drives kidney fibrosis. EMBO Molecular Medicine, 2020, 12, e11021.	3.3	41
28	Smad4 promotes diabetic nephropathy by modulating glycolysis and <scp>OXPHOS</scp> . EMBO Reports, 2020, 21, e48781.	2.0	39
29	Interleukin-9 protects from early podocyte injury and progressive glomerulosclerosis in Adriamycin-induced nephropathy. Kidney International, 2020, 98, 615-629.	2.6	18
30	Postnatal podocyte gain: Is the jury still out?. Seminars in Cell and Developmental Biology, 2019, 91, 147-152.	2.3	10
31	Optical Clearing and Imaging of Immunolabeled Kidney Tissue. Journal of Visualized Experiments, 2019, ,	0.2	5
32	The tetraspanin CD9 controls migration and proliferation of parietal epithelial cells and glomerular disease progression. Nature Communications, 2019, 10, 3303.	5.8	52
33	Normal foetal kidney volume in offspring of women treated for gestational diabetes. Endocrinology, Diabetes and Metabolism, 2019, 2, e00091.	1.0	3
34	Non-invasive evaluation of coronary heart disease in patients with chronic kidney disease using photoplethysmography. CKJ: Clinical Kidney Journal, 2019, 12, 538-545.	1.4	13
35	Anaerobic Glycolysis Maintains the Glomerular Filtration Barrier Independent of Mitochondrial Metabolism and Dynamics. Cell Reports, 2019, 27, 1551-1566.e5.	2.9	106
36	Novel 3D analysis using optical tissue clearing documents the evolution of murine rapidly progressive glomerulonephritis. Kidney International, 2019, 96, 505-516.	2.6	35

#	Article	IF	CITATIONS
37	Novel parietal epithelial cell subpopulations contribute to focal segmental glomerulosclerosis and glomerular tip lesions. Kidney International, 2019, 96, 80-93.	2.6	50
38	DNA Methyltransferase 1 Controls Nephron Progenitor Cell Renewal and Differentiation. Journal of the American Society of Nephrology: JASN, 2019, 30, 63-78.	3.0	52
39	mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight, 2019, 4, .	2.3	69
40	Development of the Human Fetal Kidney from Mid to Late Gestation in Male and Female Infants. EBioMedicine, 2018, 27, 275-283.	2.7	93
41	Optical Clearing in the Kidney Reveals Potassium-Mediated Tubule Remodeling. Cell Reports, 2018, 25, 2668-2675.e3.	2.9	40
42	We can see clearly now. Current Opinion in Nephrology and Hypertension, 2017, 26, 179-186.	1.0	12
43	Combining new tools to assess renal function and morphology: a holistic approach to study the effects of aging and a congenital nephron deficit. American Journal of Physiology - Renal Physiology, 2017, 313, F576-F584.	1.3	14
44	Gli1 + Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell, 2017, 20, 785-800.e8.	5.2	195
45	Quantifying podocyte depletion: theoretical and practical considerations. Cell and Tissue Research, 2017, 369, 229-236.	1.5	18
46	New insights on glomerular hyperfiltration: a Japanese autopsy study. JCI Insight, 2017, 2, .	2.3	57
47	Maternal Fat Feeding Augments Offspring Nephron Endowment in Mice. PLoS ONE, 2016, 11, e0161578.	1.1	17
48	Postnatal Cell Turnover in the Nephron Epithelium. , 2016, , 319-333.		0
49	Variation in Human Nephron Number and Association with Disease. , 2016, , 167-175.		1
50	Human podocyte depletion in association with older age and hypertension. American Journal of Physiology - Renal Physiology, 2016, 310, F656-F668.	1.3	55
51	Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes/Metabolism Research and Reviews, 2016, 32, 816-826.	1.7	19
52	Chronic recurrent dehydration associated with periodic water intake exacerbates hypertension and promotes renal damage in male spontaneously hypertensive rats. Scientific Reports, 2016, 6, 33855.	1.6	19
53	APOL1 Risk Alleles Are Associated With More Severe Arteriosclerosis in Renal Resistance Vessels With Aging and Hypertension. Kidney International Reports, 2016, 1, 10-23.	0.4	19
54	Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation?. Nephrology Dialysis Transplantation, 2016, 31, 1378-1380.	0.4	3

#	Article	IF	Citations
55	Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. Journal of the American Society of Nephrology: JASN, 2016, 27, 3093-3104.	3.0	59
56	Counting glomeruli and podocytes. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	1.0	29
57	Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance. Kidney International, 2015, 88, 286-298.	2.6	39
58	Podocyte Number in Children and Adults. Journal of the American Society of Nephrology: JASN, 2015, 26, 2277-2288.	3.0	61
59	Glomerular hypertrophy in subjects with low nephron number: contributions of sex, body size and race. Nephrology Dialysis Transplantation, 2014, 29, 1686-1695.	0.4	23
60	Regulation of Renal Fibrosis by Smad3 Thr388 Phosphorylation. American Journal of Pathology, 2014, 184, 944-952.	1.9	24
61	Hypertension, glomerular hypertrophy and nephrosclerosis: the effect of race. Nephrology Dialysis Transplantation, 2014, 29, 1399-1409.	0.4	77
62	MRI-based glomerular morphology and pathology in whole human kidneys. American Journal of Physiology - Renal Physiology, 2014, 306, F1381-F1390.	1.3	87
63	Design-based stereological methods for estimating numbers of glomerular podocytes. Annals of Anatomy, 2014, 196, 48-56.	1.0	18
64	Altered Ureteric Branching Morphogenesis and Nephron Endowment in Offspring of Diabetic and Insulin-Treated Pregnancy. PLoS ONE, 2013, 8, e58243.	1.1	55
65	Estimating individual glomerular volume in the human kidney: clinical perspectives. Nephrology Dialysis Transplantation, 2012, 27, 1880-1888.	0.4	42
66	Glomerular number and size variability and risk for kidney disease. Current Opinion in Nephrology and Hypertension, 2011, 20, 7-15.	1.0	126
67	Optical Clearing in Kidney Reveals Potassium-Mediated Tubule Remodeling. SSRN Electronic Journal, 0, ,	0.4	1