Jing-Wei Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6096773/publications.pdf

Version: 2024-02-01

		147786	1	89881
128	3,403	31		50
papers	citations	h-index		g-index
128	128	128		2439
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials, 2022, 15, 2600.	2.9	9
2	Experimental study on drawability of aluminium-copper composite in micro deep drawing. Journal of Materials Processing Technology, 2022, 307, 117662.	6.3	2
3	Optimisation of sintering parameters for bonding nanocrystalline cemented tungsten carbide powder and solid high strength steel. Composite Interfaces, 2021, 28, 477-492.	2.3	3
4	Experimental Investigation on Micro Deep Drawing of Stainless Steel Foils with Different Microstructural Characteristics. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	12
5	Interfacial bonding mechanism of Cu/Al composite plate produced by corrugated cold roll bonding. Rare Metals, 2021, 40, 1284-1293.	7.1	14
6	Effect of Temperature and Strain Rate on the Hot Deformation Behaviour of Ferritic Stainless Steel. Metals and Materials International, 2020, 26, 248-259.	3.4	14
7	Analysis of flow behaviour and strain partitioning mechanism of bimetal composite under hot tensile conditions. International Journal of Mechanical Sciences, 2020, 169, 105317.	6.7	22
8	Hot deformation behaviour and interfacial characteristics of bimetal composite at elevated temperatures. Intermetallics, 2020, 125, 106893.	3.9	16
9	Recent Development in Micromanufacturing of Metallic Materials. Materials, 2020, 13, 4046.	2.9	4
10	Microstructural evaluation of WC and steel dissimilar bilayered composite obtained by spark plasma sintering. International Journal of Advanced Manufacturing Technology, 2020, 111, 2405-2418.	3.0	5
11	Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium. Tribology International, 2020, 151, 106378.	5.9	27
12	Effects of cold rolling and annealing on the ridging behaviour of ferritic stainless steel. International Journal of Advanced Manufacturing Technology, 2020, 107, 4823-4836.	3.0	8
13	Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139513.	5.6	24
14	Revealing the recrystallization behavior of an excellent strip casting 4.5Âwt% Si non-oriented electrical steel. Materials Characterization, 2020, 163, 110310.	4.4	8
15	Investigation into the Dissimilar Friction Stir Welding of AA5052 and AA6061 Aluminum Alloys Using Pin-Eccentric Stir Tool. Metals, 2019, 9, 718.	2.3	14
16	Study on edge cracking of copper foils in micro rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 747, 53-62.	5.6	20
17	Analysis of surface roughness evolution of ferritic stainless steel using crystal plasticity finite element method. Journal of Materials Research and Technology, 2019, 8, 3175-3187.	5.8	19
18	Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire. Journal of Materials Engineering and Performance, 2019, 28, 4074-4085.	2.5	13

#	Article	IF	Citations
19	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	3.1	32
20	Analysis of surface roughness alteration in micro flexible rolling. Wear, 2019, 426-427, 1286-1295.	3.1	10
21	Analysis and characterisation of WC-10Co and AISI 4340 steel bimetal composite produced by powder–solid diffusion bonding. International Journal of Advanced Manufacturing Technology, 2019, 103, 3247-3263.	3.0	22
22	Experimental investigation on the mechanical and tribological coupled behaviour of bimetal composite under different states. Surface Topography: Metrology and Properties, 2019, 7, 025015.	1.6	7
23	Quantification of texture-induced ridging in ferritic stainless steels 430 and 430LR during tensile deformation. Journal of Materials Research and Technology, 2019, 8, 2041-2051.	5.8	18
24	Micromanufacturing of composite materials: a review. International Journal of Extreme Manufacturing, 2019, 1, 012004.	12.7	62
25	Effect of Tool Pin Eccentricity on the Microstructure and Mechanical Properties of Friction Stir Processed Al-6061 Alloy. Journal of Materials Engineering and Performance, 2019, 28, 2845-2852.	2.5	4
26	Graphene encapsulated SiC nanoparticles as tribology-favoured nanofillers in aluminium composite. Composites Part B: Engineering, 2019, 162, 445-453.	12.0	46
27	Effects of micro flexible rolling and annealing on microstructure, microhardness and texture of aluminium alloy. Materials Characterization, 2019, 148, 142-155.	4.4	18
28	Numerical and experimental investigation on the forming behaviour of stainless/carbon steel bimetal composite. International Journal of Advanced Manufacturing Technology, 2019, 101, 1075-1083.	3.0	21
29	Microstructure and mechanical properties of thin varying thickness strips with different transition zones produced by micro flexible rolling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1954-1967.	2.4	7
30	Microstructure and tribological behaviour of alumina composites reinforced with SiC-graphene core-shell nanoparticles. Tribology International, 2019, 131, 94-101.	5.9	26
31	Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surface and Coatings Technology, 2019, 358, 907-912.	4.8	38
32	Influence of tool pin eccentricity on microstructural evolution and mechanical properties of friction stir processed Al-5052 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 272-276.	5.6	40
33	Effects of rolling processes on ridging generation of ferritic stainless steel. Materials Characterization, 2018, 137, 201-211.	4.4	27
34	In Situ synthesis of SiC-graphene core-shell nanoparticles using wet ball milling. Ceramics International, 2018, 44, 8283-8289.	4.8	30
35	Thermomechanical processing of advanced high strength steels. Progress in Materials Science, 2018, 94, 174-242.	32.8	295
36	Analysis of oil-in-water based nanolubricants with varying mass fractions of oil and TiO 2 nanoparticles. Wear, 2018, 396-397, 162-171.	3.1	45

#	Article	IF	CITATIONS
37	Effects of friction-stir processing with water cooling on the properties of an Al–Zn–Mg–Cu Alloy. Materials Science and Technology, 2018, 34, 153-160.	1.6	16
38	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	5.9	126
39	Analysis of contact mechanics in micro flexible rolling. Procedia Manufacturing, 2018, 15, 1467-1474.	1.9	3
40	Water Cooling Effects on the Microstructural Evolution and Mechanical Properties of Friction-Stir-Processed Al-6061 Alloy. Transactions of the Indian Institute of Metals, 2018, 71, 3077-3087.	1.5	12
41	Effect of annealing on microstructure and hardness of thin aluminium strips fabricated by micro flexible rolling. MATEC Web of Conferences, 2018, 190, 11001.	0.2	2
42	Hot deformation behavior and processing maps of Ti–6Al–4V alloy with starting fully lamellar structure. Journal of Materials Research, 2018, 33, 3677-3688.	2.6	16
43	Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling. Mechanics of Advanced Materials and Modern Processes, 2018, 4, .	2.2	36
44	Analysis of sintering and bonding of ultrafine WC powder and stainless steel by hot compaction diffusion bonding. Fusion Engineering and Design, 2018, 133, 39-50.	1.9	15
45	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. Journal of Materials Processing Technology, 2018, 262, 149-156.	6.3	36
46	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	2.9	26
47	Synthesis and Characterization of Aluminum Matrix Composites Reinforced with SiC-Graphene Core-Shell Nanoparticles. Materials Science Forum, 2018, 923, 8-12.	0.3	0
48	Comparison of Multiphase Flow in a Continuous Casting Tundish Using Two Types of Industrialized Ladle Shrouds. Jom, 2018, 70, 2886-2892.	1.9	7
49	Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 2018, 148, 272-283.	6.7	30
50	Effects of Nano-TiO ₂ Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch Behavior. Tribology Transactions, 2017, 60, 362-372.	2.0	22
51	An analysis of ridging of ferritic stainless steel 430. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 685, 358-366.	5.6	43
52	Microstructural and Mechanical Characterization of a Dissimilar Friction Stir-Welded AA5083-AA7B04 Butt Joint. Journal of Materials Engineering and Performance, 2017, 26, 530-539.	2.5	16
53	Developing a self-piercing riveting with flange pipe rivet joining aluminum sheets. International Journal of Advanced Manufacturing Technology, 2017, 91, 2315-2328.	3.0	14
54	A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 2017, 109, 398-408.	5.9	180

#	Article	IF	CITATIONS
55	Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles on the tribological behaviour of oxidised high-speed steel. Tribology International, 2017, 110, 77-85.	5.9	38
56	Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 2017, 27, 26-36.	5.9	63
57	Study on growth behaviour of oxide scale and its effects on tribological property of nano-TiO 2 additive oil-in-water lubricant. Wear, 2017, 376-377, 792-802.	3.1	19
58	A review of modern advancements in micro drilling techniques. Journal of Manufacturing Processes, 2017, 29, 343-375.	5.9	146
59	Wear and friction behaviour of high-speed steel and indefinite chill material for rolling ferritic stainless steels. Wear, 2017, 376-377, 1580-1585.	3.1	28
60	Fabrication and properties of strip casting 4.5 wt% Si steel thin sheet. Journal of Magnetism and Magnetic Materials, 2017, 424, 64-68.	2.3	13
61	Influences of temperature and grain size on the material deformability in microforming process. International Journal of Material Forming, 2017, 10, 753-764.	2.0	27
62	Experimental and numerical study on micro deep drawing with aluminium-copper composite material. Procedia Engineering, 2017, 207, 1051-1056.	1.2	17
63	Effects of oil-in-water based nanolubricant containing TiO 2 nanoparticles in hot rolling of 304 stainless steel. Procedia Engineering, 2017, 207, 1385-1390.	1.2	7
64	Size Effects in Microforming. , 2017, , 29-50.		1
64	Size Effects in Microforming. , 2017, , 29-50. Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013.	0.6	1
	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017,	0.6	
65	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013.	0.6	5
65	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013. Practice of Micro Flexible Rolling. , 2017, , 325-346. Computational and Experimental Study on the Critical Unstable Shape of Coldâ€Rolled Strip. Steel		1
65 66 67	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013. Practice of Micro Flexible Rolling., 2017,, 325-346. Computational and Experimental Study on the Critical Unstable Shape of Coldâ€Rolled Strip. Steel Research International, 2016, 87, 691-698. Large magnetoresistance in highly textured Mn _{44.7} Ni _{43.5} Sn _{11.8} melt spun ribbons. Smart Materials and	1.8	5 1 4
65 66 67 68	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013. Practice of Micro Flexible Rolling., 2017, , 325-346. Computational and Experimental Study on the Critical Unstable Shape of Coldâ€Rolled Strip. Steel Research International, 2016, 87, 691-698. Large magnetoresistance in highly textured Mn _{44.7} Ni _{43.5} Sn _{11.8} melt spun ribbons. Smart Materials and Structures, 2016, 25, 055031. High Temperature Oxidation of Indefinite Chill Roll Material Under Dry and Humid Atmospheres. Steel	1.8 3.5	5 1 4 8
65 66 67 68	Size effects in micro rolling of metals. IOP Conference Series: Materials Science and Engineering, 2017, 282, 012013. Practice of Micro Flexible Rolling., 2017,, 325-346. Computational and Experimental Study on the Critical Unstable Shape of Coldâ Colled Strip. Steel Research International, 2016, 87, 691-698. Large magnetoresistance in highly textured Mn _{44.7} Ni _{43.5} Sn _{11.8} melt spun ribbons. Smart Materials and Structures, 2016, 25, 055031. High Temperature Oxidation of Indefinite Chill Roll Material Under Dry and Humid Atmospheres. Steel Research International, 2016, 87, 349-358. Analysis of {411}<148> recrystallisation texture in twin-roll strip casting of 4.5 wt% Si	1.8 3.5	5 1 4 8

#	Article	IF	CITATIONS
73	Study on Tribological Property of Nano-TiO ₂ Additive Oil-in-Water Lubricant during Hot Rolling. Materials Science Forum, 2016, 874, 381-386.	0.3	2
74	Experimental and Numerical Study on the Effect of ZDDP Films on Sticking During Hot Rolling of Ferritic Stainless Steel Strip. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5195-5202.	2.2	7
75	A Novel Nano-TiO ₂ Additive Oil-in-Water Lubricant for Hot Steel Rolling. Materials Science Forum, 2016, 861, 201-206.	0.3	5
76	A Comparative Study of Fluid Flow and Mass Transfer in a Trumpet-Shaped Ladle Shroud Using Large Eddy Simulation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 495-507.	2.1	15
77	Effects of temperature and strain rate on flow behavior and microstructural evolution of super duplex stainless steel under hot deformation. Journal of Iron and Steel Research International, 2016, 23, 244-252.	2.8	42
78	Breakaway oxidation behaviour of ferritic stainless steels at $1150 \hat{A}^{\circ} \text{C}$ in humid air. Corrosion Science, 2016, 108, 11-22.	6.6	54
79	Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 396-403.	5 . 6	37
80	The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling. Tribology International, 2016, 93, 190-201.	5. 9	19
81	Influence of multi-pass friction stir processing on the microstructure and mechanical properties of Al-5083 alloy. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 281-289.	5.6	93
82	Study on micro hydro-mechanical deep drawing using finite element method. MATEC Web of Conferences, 2016, 80, 02009.	0.2	2
83	A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2503-2513.	2.1	7
84	Crystallographic Texture Based Analysis of Fe _{/<i>α</i>-Fe₂O_{Sub>O_{O&}}	.gt; ß.& lt;/sı	ub &ig t;
85	Analysis of the microstructure, texture and magnetic properties of strip casting 4.5wt.% Si non-oriented electrical steel. Materials and Design, 2015, 85, 455-460.	7.0	28
86	The effects of vacuum annealing temperatures on the microstructure, mechanical properties and electrical resistivity of Mg–3Al–1Zn alloy ribbons. Vacuum, 2015, 115, 80-84.	3.5	6
87	Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2255-2261.	2.2	20
88	Dependence of texture development on the grain size of tertiary oxide scales formed on a microalloyed steel. Surface and Coatings Technology, 2015, 272, 39-49.	4.8	7
89	Effects of grain boundaries in oxide scale on tribological properties of nanoparticles lubrication. Wear, 2015, 332-333, 1286-1292.	3.1	17
90	High temperature oxidation behaviour of ferritic stainless steel SUS 430 in humid air. Metals and Materials International, 2015, 21, 251-259.	3.4	40

#	Article	IF	Citations
91	Effect of Extreme Pressure Additives on the Deformation Behavior of Oxide Scale during the Hot Rolling of Ferritic Stainless Steel Strips. Tribology Transactions, 2015, 58, 947-954.	2.0	15
92	Local strain analysis of the tertiary oxide scale formed on a hot-rolled steel strip via EBSD. Surface and Coatings Technology, 2015, 277, 151-159.	4.8	12
93	A switch-like magnetoresistance of ferromagnetic Ni–Mn–Ga ribbon during martensitic transformation. Materials Letters, 2015, 160, 428-431.	2.6	10
94	Investigation of oxide scale on ferritic stainless steel B445J1M and its tribological effect in hot rolling. Wear, 2015, 338-339, 178-188.	3.1	15
95	Effect of welding heat input and post-welded heat treatment on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 2524-2532.	4.2	56
96	Oxide scale characterization of ferritic stainless steel and its deformation and friction in hot rolling. Tribology International, 2015, 84, 61-70.	5.9	41
97	Microstructure and microtexture evolutions of deformed oxide layers on a hot-rolled microalloyed steel. Corrosion Science, 2015, 90, 140-152.	6.6	27
98	Effect of extreme pressure agents on the anti-scratch behaviour of high-speed steel material. Tribology International, 2015, 81, 19-28.	5.9	15
99	Characteristics of unsteady lubrication film in metal-forming process with dynamic roll gap. Journal of Central South University, 2014, 21, 3787-3792.	3.0	5
100	FEM Analysis of Profile Control Capability during Rolling in a 6-High CVC Cold Rolling Mill. Advanced Materials Research, 2014, 988, 257-262.	0.3	8
101	Molecular dynamics simulation of fracture behaviors of ã€^110ã€^ tilt grain boundaries in γ-TiAl. Transactions of Nonferrous Metals Society of China, 2014, 24, 3645-3651.	4.2	6
102	3D FEM analysis of strip shape during multi-pass rolling in a 6-high CVC cold rolling mill. International Journal of Advanced Manufacturing Technology, 2014, 74, 1733-1745.	3.0	67
103	Hydrogen-induced hardening of Ti–6Al–4V alloy in β phase field. Materials & Design, 2014, 54, 967-972.	5.1	13
104	Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels. Corrosion Science, 2014, 82, 380-391.	6.6	48
105	Characteristics of oxide scale formed on ferritic stainless steels in simulated reheating atmosphere. Surface and Coatings Technology, 2014, 258, 257-267.	4.8	58
106	Effects of Hydrogen on the Critical Conditions for Dynamic Recrystallization of Titanium Alloy During Hot Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4932-4945.	2,2	8
107	Effect of a grain-refined microalloyed steel substrate on the formation mechanism of a tight oxide scale. Corrosion Science, 2014, 85, 115-125.	6.6	32
108	Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites. Journal of Alloys and Compounds, 2014, 612, 221-226.	5.5	27

#	Article	IF	CITATIONS
109	Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network. Computational Materials Science, 2014, 92, 47-56.	3.0	134
110	Study of intermetallics and phase equilibria of Mg–Zn–La system in Mg-rich corner at 345°C. Journal of Alloys and Compounds, 2014, 612, 479-485.	5.5	16
111	Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3511-3523.	2.2	12
112	Multi-factor coupling system characteristic of the dynamic roll gap in the high-speed rolling mill during the unsteady lubrication process. Tribology International, 2013, 67, 174-181.	5.9	21
113	Enhancing impact fracture toughness and tensile properties of a microalloyed cast steel by hot forging and post-forging heat treatment processes. Materials & Design, 2013, 47, 227-233.	5.1	42
114	Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels. Materials & Design, 2013, 49, 252-258.	5.1	14
115	Effects of hydrogen on the hot deformation behaviour of Ti–6Al–4V alloy: Experimental and constitutive model studies. Journal of Alloys and Compounds, 2013, 574, 407-414.	5 . 5	35
116	Effects of tungsten addition and heat treatment conditions on microstructure and mechanical properties of microalloyed forging steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 144-151.	5.6	16
117	Work hardening behaviors of a low carbon Nb-microalloyed Si–Mn quenching–partitioning steel with different cooling styles after partitioning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 132-138.	5.6	25
118	Enhancing mechanical properties of a low-carbon microalloyed cast steel by controlled heat treatment. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 427-435.	5.6	41
119	Effect of tungsten addition on the mechanical properties and corrosion resistance of S355NL forging steel. Metals and Materials International, 2012, 18, 217-223.	3.4	9
120	Effect of thermo hydrogen treatment on lattice defects and microstructure refinement of Ti6Al4V alloy. International Journal of Hydrogen Energy, 2010, 35, 6448-6454.	7.1	46
121	Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy. Journal of Alloys and Compounds, 2010, 491, 673-678.	5 . 5	44
122	Influence of thermo hydrogen treatment on hot deformation behavior of Ti600 alloy. Transactions of Nonferrous Metals Society of China, 2009, 19, 65-71.	4.2	8
123	Influence of hydrogenation on microstructures and microhardness of Ti6Al4V alloy. Transactions of Nonferrous Metals Society of China, 2008, 18, 506-511.	4.2	22
124	Modeling of dynamic recrystallization of Ti6Al4V alloy using a cellular automaton approach. Acta Metallurgica Sinica (English Letters), 2008, 21, 260-268.	2.9	10
125	Thermodynamic Calculation on the Formation of Titanium Hydride. Chinese Journal of Chemical Physics, 2008, 21, 569-574.	1.3	12
126	Tribological Analysis of Oxide Scales during Cooling Process of Rolled Microalloyed Steel. Advanced Materials Research, 0, 1017, 435-440.	0.3	11

#	Article	lF	CITATIONS
127	Effect of Pre-Quenching Process on Microstructure and Mechanical Properties in a Nb-Microalloyed Low Carbon Q-P Steel. Materials Science Forum, 0, 816, 729-735.	0.3	6
128	A Review of Microstructure and Microtexture of Tertiary Oxide Scale in a Hot Strip Mill. Key Engineering Materials, 0, 716, 843-855.	0.4	4