
Carme PelegrÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6096713/publications.pdf Version: 2024-02-01

CADME DELECOÃ.

#	Article	lF	CITATIONS
1	Corpora Amylacea in the Human Brain Exhibit Neoepitopes of a Carbohydrate Nature. Frontiers in Immunology, 2021, 12, 618193.	4.8	12
2	From corpora amylacea to wasteosomes: History and perspectives. Ageing Research Reviews, 2021, 72, 101484.	10.9	22
3	Corpora amylacea in human hippocampal brain tissue are intracellular bodies that exhibit a homogeneous distribution of neo-epitopes. Scientific Reports, 2019, 9, 2063.	3.3	25
4	<i>Corpora amylacea</i> act as containers that remove waste products from the brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26038-26048.	7.1	33
5	Memantine for the Treatment of Dementia: A Review on its Current and Future Applications. Journal of Alzheimer's Disease, 2018, 62, 1223-1240.	2.6	150
6	Exploring the elusive composition of corpora amylacea of human brain. Scientific Reports, 2018, 8, 13525.	3.3	32
7	<scp>A</scp> strocytes and neurons produce distinct types of polyglucosan bodies in <scp>L</scp> afora disease. Glia, 2018, 66, 2094-2107.	4.9	51
8	New perspectives on corpora amylacea in the human brain. Scientific Reports, 2017, 7, 41807.	3.3	44
9	Serial block-face scanning electron microscopy applied to study the trafficking of 8D3-coated gold nanoparticles at the blood–brain barrier. Histochemistry and Cell Biology, 2017, 148, 3-12.	1.7	13
10	Periodic acid-Schiff granules in the brain of aged mice: From amyloid aggregates to degenerative structures containing neo-epitopes. Ageing Research Reviews, 2016, 27, 42-55.	10.9	30
11	Neo-epitopes emerging in the degenerative hippocampal granules of aged mice can be recognized by natural IgM auto-antibodies. Immunity and Ageing, 2015, 12, 23.	4.2	12
12	Trafficking of Gold Nanoparticles Coated with the 8D3 Anti-Transferrin Receptor Antibody at the Mouse Blood–Brain Barrier. Molecular Pharmaceutics, 2015, 12, 4137-4145.	4.6	71
13	Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age, 2014, 36, 151-165.	3.0	21
14	Clustered granules present in the hippocampus of aged mice result from a degenerative process affecting astrocytes and their surrounding neuropil. Age, 2014, 36, 9690.	3.0	10
15	Aβ increases neural stem cell activity in senescence-accelerated SAMP8 mice. Neurobiology of Aging, 2013, 34, 2623-2638.	3.1	35
16	Study of the transcytosis of an anti-transferrin receptor antibody with a Fab′ cargo across the blood–brain barrier in mice. European Journal of Pharmaceutical Sciences, 2013, 49, 556-564.	4.0	35
17	Dietary resveratrol prevents Alzheimer's markers and increases life span in SAMP8. Age, 2013, 35, 1851-1865.	3.0	224
18	PI3 k/akt inhibition induces apoptosis through p38 activation in neurons. Pharmacological Research, 2013. 70. 116-125.	7.1	29

CARME PELEGRÃ-

#	Article	IF	CITATIONS
19	GSK3β inhibition is involved in the neuroprotective effects of cyclin-dependent kinase inhibitors in neurons. Pharmacological Research, 2012, 65, 66-73.	7.1	15
20	Expression pattern of ataxia telangiectasia mutated (ATM), p53, Akt, and glycogen synthase kinaseâ€3β in the striatum of rats treated with 3â€nitropropionic acid. Journal of Neuroscience Research, 2012, 90, 1803-1813.	2.9	5
21	Characterization of Amyloid-β Granules in the Hippocampus of SAMP8 Mice. Journal of Alzheimer's Disease, 2011, 25, 535-546.	2.6	48
22	Study of the pathways involved in apoptosis induced by PI3K inhibition in cerebellar granule neurons. Neurochemistry International, 2011, 59, 159-167.	3.8	12
23	Neuronal apoptosis in the striatum of rats treated with 3-nitropropionic acid is not triggered by cell-cycle re-entry. NeuroToxicology, 2011, 32, 734-741.	3.0	6
24	Role of matrix metalloproteinaseâ€9 (MMPâ€9) in striatal blood–brain barrier disruption in a 3â€nitropropionic acid model of Huntington's disease. Neuropathology and Applied Neurobiology, 2011, 37, 525-537.	3.2	41
25	Cerebral Amyloid Angiopathy, Blood-Brain Barrier Disruption and Amyloid Accumulation in SAMP8 Mice. Neurodegenerative Diseases, 2011, 8, 421-429.	1.4	41
26	Antiapoptotic Drugs: A Therapautic Strategy for the Prevention of Neurodegenerative Diseases. Current Pharmaceutical Design, 2011, 17, 230-245.	1.9	48
27	Early Amyloid Accumulation in the Hippocampus of SAMP8 Mice. Journal of Alzheimer's Disease, 2010, 19, 1303-1315.	2.6	119
28	Systemic administration of 3-nitropropionic acid points out a different role for active caspase-3 in neurons and astrocytes. Neurochemistry International, 2010, 56, 443-450.	3.8	18
29	Sirtuin activators: Designing molecules to extend life span. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 740-749.	1.9	67
30	Resveratrol and Neurodegenerative Diseases: Activation of SIRT1 as the Potential Pathway towards Neuroprotection. Current Neurovascular Research, 2009, 6, 70-81.	1.1	151
31	An evaluation of the neuroprotective effects of melatonin in an in vitro experimental model of ageâ€induced neuronal apoptosis. Journal of Pineal Research, 2009, 46, 262-267.	7.4	41
32	Timeâ€course of blood–brain barrier disruption in senescenceâ€accelerated mouse prone 8 (SAMP8) mice. International Journal of Developmental Neuroscience, 2009, 27, 47-52.	1.6	38
33	Blood-brain barrier disruption in the striatum of rats treated with 3-nitropropionic acid. NeuroToxicology, 2009, 30, 136-143.	3.0	22
34	Potential Mechanisms Involved in the Prevention of Neurodegenerative Diseases by Lithium. CNS Neuroscience and Therapeutics, 2009, 15, 333-344.	3.9	56
35	Sirtuin and Resveratrol. Oxidative Stress and Disease, 2009, , .	0.3	0
36	A new method for determining blood–brain barrier integrity based on intracardiac perfusion of an Evans Blue–Hoechst cocktail. Journal of Neuroscience Methods, 2008, 174, 42-49.	2.5	43

CARME PELEGRÃ-

#	Article	IF	CITATIONS
37	Cell cycle activation in striatal neurons from Huntington's disease patients and rats treated with 3â€nitropropionic acid. International Journal of Developmental Neuroscience, 2008, 26, 665-671.	1.6	68
38	3-Nitropropionic acid activates calpain/cdk5 pathway in rat striatum. Neuroscience Letters, 2007, 421, 77-81.	2.1	22
39	Dietary Glutamine Affects Mucosal Functions in Rats with Mild DSS-Induced Colitis. Journal of Nutrition, 2007, 137, 1931-1937.	2.9	62
40	Increased permeability of blood–brain barrier on the hippocampus of a murine model of senescence. Mechanisms of Ageing and Development, 2007, 128, 522-528.	4.6	82
41	Effective treatment of adjuvant arthritis with a stimulatory CD28-specific monoclonal antibody. Journal of Rheumatology, 2006, 33, 110-8.	2.0	38
42	Induction of Colitis in Young Rats by Dextran Sulfate Sodium. Digestive Diseases and Sciences, 2005, 50, 143-150.	2.3	18
43	Developmental Changes in Intraepithelial T Lymphocytes and NK Cells in the Small Intestine of Neonatal Rats. Pediatric Research, 2005, 58, 885-891.	2.3	32
44	Induction of colitis in young rats by dextran sulfate sodium. Digestive Diseases and Sciences, 2005, 50, 143-50.	2.3	6
45	Dietary Plasma Protein Affects the Immune Response of Weaned Rats Challenged with S. aureus Superantigen B. Journal of Nutrition, 2004, 134, 2667-2672.	2.9	62
46	CD4 Expression Decrease by Antisense Oligonucleotides: Inhibition of Rat T CD4+ Cell Reactivity. Oligonucleotides, 2003, 13, 217-228.	2.7	3
47	Circadian rhythms in surface molecules of rat blood lymphocytes. American Journal of Physiology - Cell Physiology, 2003, 284, C67-C76.	4.6	44
48	Islet abnormalities in the pathogenesis of autoimmune diabetes. Trends in Endocrinology and Metabolism, 2002, 13, 209-214.	7.1	36
49	Islet Endocrine-Cell Behavior From Birth Onward in Mice With the Nonobese Diabetic Genetic Background. Molecular Medicine, 2001, 7, 311-319.	4.4	20
50	Prevention of adjuvant arthritis by the W3/25 anti-CD4 monoclonal antibody is associated with a decrease of blood CD4+ CD45RChigh T cells. Clinical and Experimental Immunology, 2001, 125, 470-477.	2.6	12
51	Immunohistochemical study of lymphoid tissues in adjuvant arthritis (AA) by image analysis; relationship with synovial lesions. Clinical and Experimental Immunology, 2000, 120, 200-208.	2.6	13
52	Alterations of lymphocyte populations in lymph nodes but not in spleen during the latency period of adjuvant arthritis. Inflammation, 1999, 23, 153-165.	3.8	16
53	An image analysis strategy to determine the distribution of cell types in spleen sections. Acta Histochemica, 1999, 101, 281-291.	1.8	3
54	Kinetics of W3/25 anti-rat CD4 monoclonal antibody. Immunopharmacology, 1998, 39, 83-91.	2.0	7

CARME PELEGRÃ-

#	Article	IF	CITATIONS
55	Depletion of γĴδT cells does not prevent or ameliorate, but rather aggravates, rat adjuvant arthritis. Arthritis and Rheumatism, 1996, 39, 204-215.	6.7	47
56	Treatment with an antiâ€CD4 monoclonal antibody strongly ameliorates established rat adjuvant arthritis. Clinical and Experimental Immunology, 1996, 103, 273-278.	2.6	27
57	Comparison of four lymphocyte isolation methods applied to rodent T cell subpopulations and B cells. Journal of Immunological Methods, 1995, 187, 265-271.	1.4	33
58	Administration of a Nondepleting Anti-CD4 Monoclonal Antibody (W3/25) Prevents Adjuvant Arthritis, Even upon Rechallenge: Parallel Administration of a Depleting Anti-CD8 Monoclonal Antibody (OX8) Does Not Modify the Effect of W3/25. Cellular Immunology, 1995, 165, 177-182.	3.0	25
59	Blood B, T, CD4+ and CD8+ lymphocytes in female Wistar rats. Annals of Hematology, 1993, 67, 115-118.	1.8	8