Sepideh Khodaparast

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/609667/publications.pdf Version: 2024-02-01

SEDIDEH KHODADADAST

#	Article	IF	CITATIONS
1	Temporally Arrested Breath Figure. ACS Applied Materials & amp; Interfaces, 2022, 14, 27435-27443.	8.0	8
2	Pure and mixed aqueous micellar solutions of Sodium Dodecyl sulfate (SDS) and Dimethyldodecyl Amine Oxide (DDAO): Role of temperature and composition. Journal of Colloid and Interface Science, 2021, 582, 1116-1127.	9.4	15
3	CO ₂ -Driven diffusiophoresis for maintaining a bacteria-free surface. Soft Matter, 2021, 17, 2568-2576.	2.7	15
4	Tensiometry and FTIR study of the synergy in mixed SDS:DDAO surfactant solutions at varying pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126414.	4.7	17
5	Surface-Induced Crystallization of Sodium Dodecyl Sulfate (SDS) Micellar Solutions in Confinement. Langmuir, 2021, 37, 230-239.	3.5	4
6	Lamellar-to-MLV transformation in SDS/octanol/brine examined by microfluidic-SANS and polarised microscopy. Soft Matter, 2021, 17, 10053-10062.	2.7	9
7	Growth of Myelin Figures from Parent Multilamellar Vesicles. Langmuir, 2021, 37, 12512-12517.	3.5	3
8	Orthogonal wave superposition of wrinkled, plasma-oxidised, polydimethylsiloxane surfaces. Soft Matter, 2020, 16, 595-603.	2.7	12
9	Micellar structure and transformations in sodium alkylbenzenesulfonate (NaLAS) aqueous solutions: effects of concentration, temperature, and salt. Soft Matter, 2020, 16, 7835-7844.	2.7	29
10	A microfluidic-multiwell platform for rapid phase mapping of surfactant solutions. Review of Scientific Instruments, 2020, 91, 045109.	1.3	6
11	Spontaneous formation of multilamellar vesicles from aqueous micellar solutions of sodium linear alkylbenzene sulfonate (NaLAS). Journal of Colloid and Interface Science, 2019, 546, 221-230.	9.4	11
12	Particle entrainment in dead-end pores by diffusiophoresis. Soft Matter, 2019, 15, 3879-3885.	2.7	39
13	Fountain mixing in a filling box at low Reynolds numbers. Physical Review Fluids, 2019, 4, .	2.5	10
14	Dewetting of Thin Liquid Films Surrounding Air Bubbles in Microchannels. Langmuir, 2018, 34, 1363-1370.	3.5	22
15	Bacterial Biofilm Material Properties Enable Removal and Transfer by Capillary Peeling. Advanced Materials, 2018, 30, e1804153.	21.0	62
16	Separation of particles by size from a suspension using the motion of a confined bubble. Applied Physics Letters, 2018, 112, .	3.3	16
17	Bubble-Driven Detachment of Bacteria from Confined Microgeometries. Environmental Science & Technology, 2017, 51, 1340-1347	10.0	48
18	Armoring confined bubbles in the flow of colloidal suspensions. Soft Matter, 2017, 13, 2857-2865.	2.7	23

#	Article	IF	CITATIONS
19	Water-Based Peeling of Thin Hydrophobic Films. Physical Review Letters, 2017, 119, 154502.	7.8	34
20	Laboratory layered latte. Nature Communications, 2017, 8, 1960.	12.8	20
21	Protocol to perform pressurized blister tests on thin elastic films. European Physical Journal E, 2017, 40, 64.	1.6	5
22	Effect of buoyancy on the motion of long bubbles in horizontal tubes. Physical Review Fluids, 2017, 2, .	2.5	11
23	Sudden expansions in circular microchannels: flow dynamics and pressure drop. Microfluidics and Nanofluidics, 2014, 17, 561-572.	2.2	31
24	A micro particle shadow velocimetry (μPSV) technique to measure flows in microchannels. Experiments in Fluids, 2013, 54, 1.	2.4	25