Maria Coros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6096374/publications.pdf

Version: 2024-02-01

		279487	315357
58	1,577	23	38
papers	citations	h-index	g-index
58	58	58	2229
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Frontiers of Materials Science, 2019, 13, 23-32.	1.1	126
2	Simple and cost-effective synthesis of graphene by electrochemical exfoliation of graphite rods. RSC Advances, 2016, 6, 2651-2661.	1.7	114
3	Reviewâ€"Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. Journal of the Electrochemical Society, 2020, 167, 037528.	1.3	103
4	The influence of uric and ascorbic acid on the electrochemical detection of dopamine using graphene-modified electrodes. Electrochimica Acta, 2015, 154, 197-204.	2.6	101
5	Graphene based nanomaterials as chemical sensors for hydrogen peroxide – A comparison study of their intrinsic peroxidase catalytic behavior. Sensors and Actuators B: Chemical, 2015, 213, 474-483.	4.0	93
6	Azo dyes degradation using TiO2-Pt/graphene oxide and TiO2-Pt/reduced graphene oxide photocatalysts under UV and natural sunlight irradiation. Solid State Sciences, 2017, 70, 13-20.	1.5	79
7	Photocatalytic performance of graphene/TiO2-Ag composites on amaranth dye degradation. Materials Chemistry and Physics, 2016, 179, 232-241.	2.0	64
8	Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection. Electrochimica Acta, 2018, 283, 578-589.	2.6	62
9	Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids and Surfaces B: Biointerfaces, 2015, 136, 791-798.	2.5	51
10	Green synthesis, characterization and potential application of reduced graphene oxide. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113971.	1.3	47
11	Graphene-porphyrin composite synthesis through graphite exfoliation: The electrochemical sensing of catechol. Sensors and Actuators B: Chemical, 2018, 256, 665-673.	4.0	46
12	Nitrogen-Doped Graphene: The Influence of Doping Level on the Charge-Transfer Resistance and Apparent Heterogeneous Electron Transfer Rate. Sensors, 2020, 20, 1815.	2.1	41
13	Electrochemical platform based on nitrogen-doped graphene/chitosan nanocomposite for selective Pb ²⁺ detection. Nanotechnology, 2017, 28, 114001.	1.3	33
14	Graphene-based materials produced by graphite electrochemical exfoliation in acidic solutions: Application to Sunset Yellow voltammetric detection. Microchemical Journal, 2019, 147, 112-120.	2.3	30
15	Graphene–bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A. Nanotechnology, 2016, 27, 484001.	1.3	29
16	Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode. Analytical Letters, 2019, 52, 2583-2606.	1.0	29
17	Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials. Talanta, 2016, 148, 511-517.	2.9	28
18	Cytotoxicity mechanisms of nitrogen-doped graphene obtained by electrochemical exfoliation of graphite rods, on human endothelial and colon cancer cells. Carbon, 2020, 158, 267-281.	5.4	28

#	Article	IF	CITATIONS
19	Electro-catalytic properties of graphene composites containing gold or silver nanoparticles. Electrochimica Acta, 2013, 89, 246-252.	2.6	26
20	Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Bioelectrochemistry, 2018, 120, 94-103.	2.4	26
21	Thermally reduced graphene oxide as green and easily available adsorbent for Sunset yellow decontamination. Environmental Research, 2020, 182, 109047.	3.7	26
22	Reduced graphene oxide modified with noble metal nanoparticles for formic acid dehydrogenation. Catalysis Today, 2021, 366, 41-47.	2.2	26
23	Exfoliation of graphite rods via pulses of current for graphene synthesis: Sensitive detection of 8-hydroxy-2′-deoxyguanosine. Talanta, 2019, 196, 182-190.	2.9	25
24	A concise overview on plasma treatment for application on textile and leather materials. Plasma Processes and Polymers, 2020, 17, 2000046.	1.6	25
25	Enantioanalysis of glutamine—a key factor in establishing the metabolomics process in gastric cancer. Analytical and Bioanalytical Chemistry, 2020, 412, 3199-3207.	1.9	24
26	On the enhancement of hydrogen uptake by IRMOF-8 composites with Pt/carbon catalyst. International Journal of Hydrogen Energy, 2012, 37, 7378-7384.	3.8	20
27	The study of adenine and guanine electrochemical oxidation using electrodes modified with graphene-platinum nanoparticles composites. Electrochimica Acta, 2014, 139, 386-393.	2.6	19
28	Graphene/TiO ₂ -Ag Based Composites Used as Sensitive Electrode Materials for Amaranth Electrochemical Detection and Degradation. Journal of the Electrochemical Society, 2018, 165, 83054-83059.	1.3	17
29	Influence of chemical oxidation upon the electro-catalytic properties of graphene–gold nanoparticle composite. Electrochimica Acta, 2013, 91, 137-143.	2.6	16
30	Enantioanalysis of tryptophan in whole blood samples using stochastic sensors—A screening test for gastric cancer. Chirality, 2020, 32, 215-222.	1.3	16
31	Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine. Sensors, 2020, 20, 3609.	2.1	16
32	Nitrogen and Sulfur Co-Doped Graphene as Efficient Electrode Material for L-Cysteine Detection. Chemosensors, 2021, 9, 146.	1.8	16
33	Myoglobin-silver reduced graphene oxide nanocomposite stochastic biosensor for the determination of luteinizing hormone and follicle-stimulating hormone from saliva samples. Analytical and Bioanalytical Chemistry, 2020, 412, 5191-5202.	1.9	15
34	Sensitive detection of hydroquinone using exfoliated graphene-Au/glassy carbon modified electrode. Nanotechnology, 2018, 29, 095501.	1.3	14
35	Enhancement of peroxidase-like activity of N-doped graphene assembled with iron-tetrapyridylporphyrin. RSC Advances, 2016, 6, 79497-79506.	1.7	13
36	Cytotoxicity of methylcellulose-based films containing graphenes and curcumin on human lung fibroblasts. Process Biochemistry, 2017, 52, 243-249.	1.8	12

#	Article	IF	CITATIONS
37	Photocatalytic and Electrocatalytic Properties of NGr-ZnO Hybrid Materials. Nanomaterials, 2020, 10, 1473.	1.9	12
38	Graphene/silver nanoparticlesâ€based surfaceâ€enhanced Raman spectroscopy detection platforms: Application in the study of DNA molecules at low pH. Journal of Raman Spectroscopy, 2019, 50, 1849-1860.	1.2	10
39	Electrochemical oxidation of adenine using platinum electrodes modified with carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 181-185.	1.3	9
40	Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H 2 O 2. Electrochimica Acta, 2016, 220, 664-671.	2.6	9
41	Detection of 8-Hydroxy-2′-Deoxyguanosine Biomarker with a Screen-Printed Electrode Modified with Graphene. Sensors, 2019, 19, 4297.	2.1	8
42	Investigation of L-Tryptophan Electrochemical Oxidation with a Graphene-Modified Electrode. Biosensors, 2021, 11, 36.	2.3	8
43	Electrochemical and spectroscopic studies of ssDNA damage induced by hydrogen peroxide using graphene based nanomaterials. Talanta, 2015, 138, 209-217.	2.9	7
44	Hydrothermal Synthesis of Nitrogen, Boron Co-Doped Graphene with Enhanced Electro-Catalytic Activity for Cymoxanil Detection. Sensors, 2021, 21, 6630.	2.1	7
45	Nitrogen-Doped Graphene-Based Sensor for Electrochemical Detection of Piroxicam, a NSAID Drug for COVID-19 Patients. Chemosensors, 2022, 10, 47.	1.8	7
46	Stochastic microsensors based on modified graphene for pattern recognition of maspin in biological samples. Analytical and Bioanalytical Chemistry, 2022, 414, 3667-3673.	1.9	7
47	Sensing and Interaction of His-Tagged CA19-9 Antigen with Graphene-Modified Electrodes. Chemosensors, 2020, 8, 112.	1.8	6
48	Electrochemical L-Tyrosine Sensor Based on a Glassy Carbon Electrode Modified with Exfoliated Graphene. Sensors, 2022, 22, 3606.	2.1	5
49	N,S-Decorated graphenes modified with 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine manganese(III) chloride-based 3D needle stochastic sensors for enantioanalysis of arginine: a key factor in the metabolomics and early detection of gastric cancer. Analytical and Bioanalytical Chemistry, 2022, 414, 6521-6530.	1.9	5
50	Application in Electrochemistry of Graphene-Modified Electrodes. Micro and Nanosystems, 2013, 5, 127-137.	0.3	4
51	A comparative study concerning chromatographic retention and computed partition coefficients of some precursors of peraza crown ethers. Open Chemistry, 2010, 8, 1203-1209.	1.0	3
52	Supported H4SiW12O40 catalysts for α-pinene isomerization. Open Chemistry, 2012, 10, 1208-1217.	1.0	3
53	Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites. International Journal of Nanomedicine, 2014, 9, 1111.	3.3	3
54	Electrochemical degradation of carbamazepine using modified electrode with graphene-AuAg composite. AIP Conference Proceedings, $2015, , .$	0.3	2

#	Article	IF	CITATIONS
55	Surface dynamics of genomic DNAs upon lowering the pH, in the presence of graphene/AgNPs-based SERS detection platform. Journal of Molecular Modeling, 2020, 26, 211.	0.8	2
56	Evaluation of N-doped graphene role in the visible-light driven photodegradation of sulfamethoxazole by a TiO2-silver-graphene composite. Journal of Photochemistry and Photobiology A: Chemistry, 2021, , 113701.	2.0	2
57	Voltammetric determination of bisphenol A with a silver-reduced graphene oxide composite paste microsensor. , 2019, , .		1
58	Bio-Functionalized Metallic Nanoparticles with Applications in Medicine., 2016,, 803-817.		1