## Kenneth K S Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6096205/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Superhydrophobic Carbon Nanotube Forests. Nano Letters, 2003, 3, 1701-1705.                                                                                                           | 9.1  | 1,527     |
| 2  | Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 2019, 4, 484-494.                | 39.5 | 345       |
| 3  | Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):Â An Experimental Study.<br>Macromolecules, 2006, 39, 3688-3694.                                                  | 4.8  | 265       |
| 4  | Initiated Chemical Vapor Deposition (iCVD) of Poly(alkyl acrylates):Â A Kinetic Model. Macromolecules,<br>2006, 39, 3695-3703.                                                        | 4.8  | 161       |
| 5  | Designing polymer surfaces via vapor deposition. Materials Today, 2010, 13, 26-33.                                                                                                    | 14.2 | 123       |
| 6  | Structure and Morphology of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition.<br>Chemistry of Materials, 2000, 12, 3032-3037.                                       | 6.7  | 103       |
| 7  | Enhanced Charge Storage of Ultrathin Polythiophene Films within Porous Nanostructures. ACS Nano, 2014, 8, 5413-5422.                                                                  | 14.6 | 88        |
| 8  | Pore Filling of Nanostructured Electrodes in Dye Sensitized Solar Cells by Initiated Chemical Vapor<br>Deposition. Nano Letters, 2011, 11, 419-423.                                   | 9.1  | 82        |
| 9  | Title is missing!. Plasmas and Polymers, 1999, 4, 21-32.                                                                                                                              | 1.5  | 79        |
| 10 | Particle Surface Design using an All-Dry Encapsulation Method. Advanced Materials, 2006, 18, 1972-1977.                                                                               | 21.0 | 75        |
| 11 | All-Dry Synthesis and Coating of Methacrylic Acid Copolymers for Controlled Release.<br>Macromolecular Bioscience, 2007, 7, 429-434.                                                  | 4.1  | 73        |
| 12 | Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nature<br>Communications, 2015, 6, 6735.                                                         | 12.8 | 71        |
| 13 | Initiated chemical vapor deposition (iCVD) of polymeric nanocoatings. Surface and Coatings<br>Technology, 2007, 201, 9400-9405.                                                       | 4.8  | 69        |
| 14 | Engineering Ultrathin Polyaniline in Micro/Mesoporous Carbon Supercapacitor Electrodes Using<br>Oxidative Chemical Vapor Deposition. Advanced Materials Interfaces, 2017, 4, 1601201. | 3.7  | 66        |
| 15 | Thickness-Dependent Crossover from Charge- to Strain-Mediated Magnetoelectric Coupling in<br>Ferromagnetic/Piezoelectric Oxide Heterostructures. ACS Nano, 2014, 8, 894-903.          | 14.6 | 61        |
| 16 | Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films. Thin<br>Solid Films, 2001, 395, 288-291.                                                     | 1.8  | 59        |
| 17 | The importance of interfacial design at the carbon nanotube/polymer composite interface. Journal of Applied Polymer Science, 2006, 102, 1413-1418.                                    | 2.6  | 58        |
| 18 | Full-Field Dynamic Characterization of Superhydrophobic Condensation on Biotemplated Nanostructured Surfaces. Langmuir, 2014, 30, 7556-7566.                                          | 3.5  | 58        |

KENNETH K S LAU

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mechanical Properties of Ultrahigh Molecular Weight PHEMA Hydrogels Synthesized Using Initiated Chemical Vapor Deposition. Biomacromolecules, 2010, 11, 2116-2122.                                              | 5.4 | 53        |
| 20 | Chemical Vapor Deposition Synthesis of Tunable Unsubstituted Polythiophene. Langmuir, 2011, 27, 15223-15229.                                                                                                    | 3.5 | 46        |
| 21 | Particle functionalization and encapsulation by initiated chemical vapor deposition (iCVD). Surface and Coatings Technology, 2007, 201, 9189-9194.                                                              | 4.8 | 44        |
| 22 | Pulsed plasma enhanced and hot filament chemical vapor deposition of fluorocarbon films. Journal of Fluorine Chemistry, 2000, 104, 119-126.                                                                     | 1.7 | 40        |
| 23 | Polymeric nanocoatings by hot-wire chemical vapor deposition (HWCVD). Thin Solid Films, 2006, 501, 211-215.                                                                                                     | 1.8 | 40        |
| 24 | Oxidative chemical vapor deposition of polyaniline thin films. Beilstein Journal of Nanotechnology,<br>2017, 8, 1266-1276.                                                                                      | 2.8 | 37        |
| 25 | Fluorocarbon dielectrics via hot filament chemical vapor deposition. Journal of Fluorine Chemistry, 2003, 122, 93-96.                                                                                           | 1.7 | 36        |
| 26 | Variable angle spectroscopic ellipsometry of fluorocarbon films from hot filament chemical vapor<br>deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2404.         | 2.1 | 35        |
| 27 | Initiated CVD of Poly(2â€Hydroxyethyl Methacrylate) Hydrogels: Synthesis, Characterization and Inâ€vitro<br>Biocompatibility. Chemical Vapor Deposition, 2009, 15, 150-155.                                     | 1.3 | 35        |
| 28 | Electric Field-Induced, Reversible Lotus-to-Rose Transition in Nanohybrid Shish Kebab Paper with<br>Hierarchical Roughness. ACS Applied Materials & Interfaces, 2013, 5, 12089-12098.                           | 8.0 | 35        |
| 29 | Carbon Nanotubeâ€Directed Polytetrafluoroethylene Crystal Growth via Initiated Chemical Vapor<br>Deposition. Macromolecular Rapid Communications, 2013, 34, 251-256.                                            | 3.9 | 34        |
| 30 | Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chemical Engineering Science, 2019, 194, 156-164.                        | 3.8 | 34        |
| 31 | Reduced cell attachment to poly(2â€hydroxyethyl methacrylate)â€coated ventricular catheters <i>in<br/>vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1268-1279. | 3.4 | 33        |
| 32 | Graft Polymerization of Anti-Fouling PEO Surfaces by Liquid-Free Initiated Chemical Vapor Deposition.<br>Macromolecules, 2012, 45, 6915-6922.                                                                   | 4.8 | 32        |
| 33 | High-Resolution 19F MAS NMR Spectroscopy of Fluorocarbon Films from Pulsed PECVD of<br>Hexafluoropropylene Oxide. Journal of Physical Chemistry B, 1998, 102, 5977-5984.                                        | 2.6 | 31        |
| 34 | Thermochemistry of gas phase CF2 reactions: A density functional theory study. Journal of Chemical Physics, 2000, 113, 4103-4108.                                                                               | 3.0 | 30        |
| 35 | Initiated chemical vapor deposition (iCVD) of copolymer thin films. Thin Solid Films, 2008, 516, 678-680.                                                                                                       | 1.8 | 27        |
| 36 | Theoretical and Experimental Study of a Dye-Sensitized Solar Cell. Industrial & Engineering<br>Chemistry Research, 2014, 53, 5234-5247.                                                                         | 3.7 | 27        |

Kenneth K S Lau

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structural Correlation Study of Pulsed Plasma-Polymerized Fluorocarbon Solids by Two-Dimensional<br>Wide-Line Separation NMR Spectroscopy. Journal of Physical Chemistry B, 1997, 101, 6839-6846.                                    | 2.6 | 26        |
| 38 | Effects of polymer chemistry on polymer-electrolyte dye sensitized solar cell performance: A theoretical and experimental investigation. Journal of Power Sources, 2015, 274, 156-164.                                               | 7.8 | 25        |
| 39 | Thermal Annealing of Fluorocarbon Films Grown by Hot Filament Chemical Vapor Deposition. Journal of Physical Chemistry B, 2001, 105, 2303-2307.                                                                                      | 2.6 | 22        |
| 40 | Synthesis and integration of poly(1-vinylimidazole) polymer electrolyte in dye sensitized solar cells by initiated chemical vapor deposition. Chemical Engineering Science, 2016, 154, 136-142.                                      | 3.8 | 22        |
| 41 | Influence of oCVD Polyaniline Film Chemistry in Carbon-Based Supercapacitors. Industrial &<br>Engineering Chemistry Research, 2017, 56, 6221-6228.                                                                                   | 3.7 | 22        |
| 42 | "Toxic memory―via chaperone modification is a potential mechanism for rapid mallory-denk body<br>reinduction. Hepatology, 2008, 48, 931-942.                                                                                         | 7.3 | 20        |
| 43 | Pulsed Plasma Enhanced Chemical Vapor Deposition from CH <sub>2</sub> F <sub>2</sub> ,<br>C <sub>2</sub> H <sub>2</sub> F <sub>4</sub> , and CHCIF <sub>2</sub> . Materials Research Society<br>Symposia Proceedings, 1998, 511, 75. | 0.1 | 18        |
| 44 | Microencapsulation of a Crop Protection Compound by Initiated Chemical Vapor Deposition.<br>Macromolecular Rapid Communications, 2012, 33, 1375-1380.                                                                                | 3.9 | 16        |
| 45 | Kinetic analysis of the initiated chemical vapor deposition of poly(vinylpyrrolidone) and poly(4-vinylpyridine). Thin Solid Films, 2015, 595, 244-250.                                                                               | 1.8 | 15        |
| 46 | Photochromic dye-sensitized solar cells. AIMS Materials Science, 2015, 2, 503-509.                                                                                                                                                   | 1.4 | 14        |
| 47 | Masking of a cathepsin G cleavage site <i>in vivo</i> contributes to the proteolytic resistance of major histocompatibility complex class II molecules. Immunology, 2010, 130, 436-446.                                              | 4.4 | 13        |
| 48 | Firstâ€principles modeling for optimal design, operation, and integration of energy conversion and storage systems. AICHE Journal, 2019, 65, e16482.                                                                                 | 3.6 | 13        |
| 49 | Oxidative Chemical Vapor Deposition of Conducting Polymer Films on Nanostructured Surfaces for Piezoresistive Sensor Applications. Advanced Electronic Materials, 2021, 7, 2000871.                                                  | 5.1 | 13        |
| 50 | Molecular orientation in mixed LB films containing photochromic molecules. Thin Solid Films, 1997, 307, 266-273.                                                                                                                     | 1.8 | 12        |
| 51 | iCVD growth of poly(N-vinylimidazole) and poly(N-vinylimidazole-co-N-vinylpyrrolidone). Thin Solid<br>Films, 2009, 517, 3539-3542.                                                                                                   | 1.8 | 12        |
| 52 | Integration of polymer electrolytes in dye sensitized solar cells by initiated chemical vapor<br>deposition. Thin Solid Films, 2011, 519, 4551-4554.                                                                                 | 1.8 | 12        |
| 53 | Initiated chemical vapor deposition of poly(2-hydroxyethyl methacrylate) hydrogels. Thin Solid Films, 2011, 519, 4415-4417.                                                                                                          | 1.8 | 11        |
| 54 | Photon to thermal response of a single patterned gold nanorod cluster under near-infrared laser irradiation. Biofabrication, 2011, 3, 015002.                                                                                        | 7.1 | 11        |

Kenneth K S Lau

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Experimental and theoretical investigation of dye sensitized solar cells integrated with crosslinked poly(vinylpyrrolidone) polymer electrolyte using initiated chemical vapor deposition. Thin Solid Films, 2017, 635, 9-16.        | 1.8 | 11        |
| 56 | Suppressing Crystallinity by Nanoconfining Polymers Using Initiated Chemical Vapor Deposition.<br>Macromolecules, 2019, 52, 5183-5191.                                                                                               | 4.8 | 11        |
| 57 | Overview of Dye-Sensitized Solar Cells. , 2019, , 1-49.                                                                                                                                                                              |     | 10        |
| 58 | Solid‣tate Nuclear Magnetic Resonance Spectroscopy of Low Dielectric Constant Films from Pulsed<br>Hydrofluorocarbon Plasmas. Journal of the Electrochemical Society, 1999, 146, 2652-2658.                                          | 2.9 | 9         |
| 59 | Thin Film Condensation Supported on Ambiphilic Microstructures. Journal of Heat Transfer, 2017, 139, .                                                                                                                               | 2.1 | 9         |
| 60 | Conformal Growth of Ultrathin Hydrophilic Coatings on Hydrophobic Surfaces Using Initiated Chemical Vapor Deposition. Langmuir, 2021, 37, 7751-7759.                                                                                 | 3.5 | 9         |
| 61 | Growth of Polyglycidol in Porous TiO <sub>2</sub> Nanoparticle Networks via Initiated Chemical<br>Vapor Deposition: Probing Polymer Confinement Under High Nanoparticle Loading. Advanced<br>Materials Interfaces, 2015, 2, 1500341. | 3.7 | 8         |
| 62 | Suitability of N-propanoic acid spiropyrans and spirooxazines for use as sensitizing dyes in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2017, 19, 2981-2989.                                                   | 2.8 | 8         |
| 63 | Electrical Conductivity and Stability of Oxidative Chemical Vapor Deposition Copolymer Thin Films of Thiophene and Pyrrole. Nanoscience and Nanotechnology Letters, 2015, 7, 50-55.                                                  | 0.4 | 8         |
| 64 | Applying HWCVD to particle coatings and modeling the deposition mechanism. Thin Solid Films, 2008, 516, 674-677.                                                                                                                     | 1.8 | 7         |
| 65 | Deposition Behavior of Polyaniline on Carbon Nanofibers by Oxidative Chemical Vapor Deposition.<br>Langmuir, 2020, 36, 13079-13086.                                                                                                  | 3.5 | 6         |
| 66 | Oneâ€Step Bottomâ€Up Growth of Highly Liquid Repellent Worm‣ike Surfaces on Planar Substrates.<br>Advanced Materials Interfaces, 2022, 9, .                                                                                          | 3.7 | 6         |
| 67 | Dataâ€driven prediction and optimization of liquid wettability of an initiated chemical vapor<br>depositionâ€produced fluoropolymer. AICHE Journal, 2022, 68, .                                                                      | 3.6 | 5         |
| 68 | Cancer Biomarker Discovery via Targeted Profiling of Multiclass Tumor Tissue-Derived Proteomes.<br>Clinical Proteomics, 2009, 5, 163-169.                                                                                            | 2.1 | 3         |
| 69 | Formation and Stability of Thin Condensing Films on Structured Amphiphilic Surfaces. Langmuir, 2021, 37, 2683-2692.                                                                                                                  | 3.5 | 3         |
| 70 | Insights Into Dye-Sensitized Solar Cells From Macroscopic-Scale First-Principles Mathematical Modeling. , 2019, , 83-119.                                                                                                            |     | 2         |
| 71 | In Situ Synthesis and Integration of Polymer Electrolytes in Nanostructured Electrodes for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2011, 1312, 1.                                                | 0.1 | 1         |
| 72 | Model-Guided Design and Optimization of Polymer-Electrolyte Dye Sensitized Solar Cells. ECS Meeting Abstracts, 2016, , .                                                                                                             | 0.0 | 0         |

| #  | Article                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Viable Approach for Forming Uniform Polymer Nanocomposites with Ultrahigh Filler Loading. ECS<br>Meeting Abstracts, 2016, , .          | 0.0 | 0         |
| 74 | Synthesis and Integration of Ultrathin Polyaniline Films into Carbide Derived Carbon Supercapacitors. ECS Meeting Abstracts, 2016, , . | 0.0 | 0         |