
Susan Baserga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6095630/publications.pdf

Version: 2024-02-01

SUSAN RASEDCA

#	Article	IF	CITATIONS
1	A high-throughput assay for directly monitoring nucleolar rRNA biogenesis. Open Biology, 2022, 12, 210305.	1.5	18
2	U8 variants on the brain: a small nucleolar RNA and human disease. RNA Biology, 2022, 19, 412-418.	1.5	8
3	Nascent alt-protein chemoproteomics reveals a pre-60S assembly checkpoint inhibitor. Nature Chemical Biology, 2022, 18, 643-651.	3.9	14
4	Ribosomal RNA Transcription Regulation in Breast Cancer. Genes, 2021, 12, 502.	1.0	22
5	Increased numbers of nucleoli in a genome-wide RNAi screen reveal proteins that link the cell cycle to RNA polymerase I transcription. Molecular Biology of the Cell, 2021, 32, 956-973.	0.9	22
6	Biallelic splicing variants in the nucleolar 60S assembly factor RBM28 cause the ribosomopathy ANE syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
7	Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development. PLoS Genetics, 2020, 16, e1008967.	1.5	9
8	Nop9 recognizes structured and single-stranded RNA elements of preribosomal RNA. Rna, 2020, 26, 1049-1059.	1.6	3
9	MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochemical Society Transactions, 2020, 48, 595-612.	1.6	18
10	Emerging Roles for the Nucleolus 2019. Journal of Biological Chemistry, 2020, 295, 5535-5537.	1.6	4
11	Ribosomopathies: Old Concepts, New Controversies. Trends in Genetics, 2019, 35, 754-767.	2.9	141
12	Fanconi anemia protein FANCI functions in ribosome biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2561-2570.	3.3	44
13	Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number. Cell Reports, 2018, 22, 1923-1934.	2.9	92
14	The SSU processome interactome in <i>Saccharomyces cerevisiae</i> reveals novel protein subcomplexes. Rna, 2018, 24, 77-89.	1.6	18
15	Emerging Roles for the Nucleolus 2017. Molecular Biology of the Cell, 2018, 29, 773-775.	0.9	8
16	<i>RPSA</i> , a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in <i>Xenopus</i> . Development (Cambridge), 2018, 145, .	1.2	16
17	Crosstalk between the nucleolus and the DNA damage response. Molecular BioSystems, 2017, 13, 443-455.	2.9	69
18	A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism. American Journal of Human Genetics, 2017, 100, 506-522.	2.6	69

SUSAN BASERGA

#	Article	IF	CITATIONS
19	Ribosomes Need Straight A's to Sleep. Cell, 2017, 169, 565-567.	13.5	2
20	Mutations in KDSR Cause Recessive Progressive Symmetric Erythrokeratoderma. American Journal of Human Genetics, 2017, 100, 978-984.	2.6	67
21	Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Nucleic Acids Research, 2016, 44, 8976-8989.	6.5	15
22	The Contributions of the Ribosome Biogenesis Protein Utp5/WDR43 to Craniofacial Development. Journal of Dental Research, 2016, 95, 1214-1220.	2.5	6
23	Probing the mechanisms underlying human diseases in making ribosomes. Biochemical Society Transactions, 2016, 44, 1035-1044.	1.6	36
24	Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA. Nature Communications, 2016, 7, 13085.	5.8	34
25	Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis. BMC Developmental Biology, 2016, 16, 38.	2.1	22
26	The molecular basis for ANE syndrome revealed by the large ribosomal subunit processome interactome. ELife, 2016, 5, .	2.8	11
27	A protein interaction map of the LSU processome. Genes and Development, 2015, 29, 862-875.	2.7	41
28	Determinants of mammalian nucleolar architecture. Chromosoma, 2015, 124, 323-331.	1.0	80
29	The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus. PLoS Genetics, 2015, 11, e1005018.	1.5	38
30	A divergent Pumilio repeat protein family for pre-rRNA processing and mRNA localization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18554-18559.	3.3	48
31	Tissue Specific Roles for the Ribosome Biogenesis Factor Wdr43 in Zebrafish Development. PLoS Genetics, 2014, 10, e1004074.	1.5	41
32	Human diseases of the SSU processome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 758-764.	1.8	39
33	Cryo-Electron Microscopic Study of the Enzymatic Mechanism of the RNA 2'-O-Methyltransferase Box CD sRNP. Microscopy and Microanalysis, 2014, 20, 1284-1285.	0.2	9
34	Ribosome Biogenesis in the Yeast <i>Saccharomyces cerevisiae</i> . Genetics, 2013, 195, 643-681.	1.2	639
35	Mysterious Ribosomopathies. Science, 2013, 341, 849-850.	6.0	102
36	The novel zebrafish mutant fantome/wdr43 as a human craniofacial ribosomopathy model. FASEB Journal, 2013, 27, 319.1.	0.2	0

SUSAN BASERGA

#	Article	IF	CITATIONS
37	NOL11, implicated in the pathogenesis of North American Indian Childhood Cirrhosis, is required for preâ€rRNA transcription and processing. FASEB Journal, 2013, 27, 552.1.	0.2	0
38	NOL11, Implicated in the Pathogenesis of North American Indian Childhood Cirrhosis, Is Required for Pre-rRNA Transcription and Processing. PLoS Genetics, 2012, 8, e1002892.	1.5	88
39	The Box C/D sRNP dimeric architecture is conserved across Kingdom Archaea. FASEB Journal, 2012, 26, 773.2.	0.2	0
40	The C-terminus of Utp4, mutated in childhood cirrhosis, is essential for ribosome biogenesis. Nucleic Acids Research, 2010, 38, 4798-4806.	6.5	63
41	Electron microscopy reveals that archaeal box C/D sRNPs are diâ€sRNPs. FASEB Journal, 2009, 23, 661.2.	0.2	0
42	Ribosome Biogenesis Is Sensed at the Start Cell Cycle Checkpoint. Molecular Biology of the Cell, 2007, 18, 953-964.	0.9	116
43	Autoantibody Recognition of Macromolecular Structures and Their Subunits. , 2006, , 379-417.		1
44	RNA polymerase I transcription and pre-rRNA processing are linked by specific SSU processome components. Genes and Development, 2004, 18, 2506-2517.	2.7	214
45	Ribosome biogenesis: of knobs and RNA processing. Experimental Cell Research, 2004, 296, 43-50.	1.2	205
46	An unexpected, conserved element of the U3 snoRNA is required for Mpp10p association. Rna, 2001, 7, 904-919.	1.6	21
47	Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. Rna, 1999, 5, 1597-1604.	1.6	62
48	M Phase Phosphoprotein 10 Is a Human U3 Small Nucleolar Ribonucleoprotein Component. Molecular Biology of the Cell, 1998, 9, 437-449.	0.9	55
49	Mpp10p, a new protein component of the U3 snoRNP required for processing of 18S rRNA precursors. Nucleic Acids Symposium Series, 1997, , 64-7.	0.3	8
50	Ella Clay Wakeman: Yale School of Medicine, 1921. Yale Journal of Biology and Medicine, 1995, 68, 171-90.	0.2	2
51	Distinct molecular signals for nuclear import of the nucleolar snRNA, U3 Genes and Development, 1992, 6, 1120-1130.	2.7	53
52	An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. EMBO Journal, 1991, 10, 2645-51.	3.5	88