Yong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6095527/publications.pdf

Version: 2024-02-01

61 papers	1,555 citations	21 h-index	39 g-index
61	61	61	1230
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Packaged optofluidic microbottle resonator for high-sensitivity bidirectional magnetic field sensing. Optics Letters, 2022, 47, 2766.	3.3	6
2	High-Sensitivity Flow Rate Sensor Enabled by Higher Order Modes of Packaged Microbottle Resonator. IEEE Photonics Technology Letters, 2021, 33, 599-602.	2.5	12
3	Hollow-glass-microsphere-assisted half-circle interference for hydrostatic pressure measurement with high sensitivity. Optics Express, 2021, 29, 21252.	3.4	5
4	Magnetic Fluid Infiltrated Microbottle Resonator Sensor With Axial Confined Mode. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	14
5	Comparative Study on Transmission Mechanisms in a SMF-Capillary-SMF Structure. Journal of Lightwave Technology, 2020, , 1-1.	4.6	15
6	All-Pass and Add-Drop Microsphere Resonator in a Suspended Dual-Core Hollow Fiber. IEEE Photonics Technology Letters, 2020, 32, 603-606.	2.5	5
7	In-fiber zigzag excitation for whispering-gallery modes via evanescent wave and free space coupling. Optics Express, 2020, 28, 31386.	3.4	5
8	Cavity Ring-Up Spectroscopy for Dissipative and Dispersive Sensing in a Whispering Gallery Mode Resonator., 2018,, 629-646.		1
9	Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica, 2018, 5, 674.	9.3	67
10	Towards Visible Frequency Comb Generation Using a Hollow WGM Resonator. The Review of Laser Engineering, 2018, 46, 92.	0.0	3
11	Hollow whispering gallery resonators. , 2018, , .		0
12	Nanoparticle trapping and control in a hollow whispering gallery resonator. Proceedings of SPIE, 2017, , .	0.8	0
13	Refractometry With a Tailored Sensitivity Based on a Single-Mode-Capillary-Single-Mode Fiber Structure. IEEE Photonics Journal, 2017, 9, 1-8.	2.0	14
14	Whispering gallery resonators for optical sensing. Proceedings of SPIE, 2017, , .	0.8	1
15	Observation of Fano resonances in a reflective fiber coupled microcavity., 2017,,.		1
16	Tunable erbium-doped microbubble laser fabricated by sol-gel coating. Optics Express, 2017, 25, 1308.	3.4	40
17	All-optical nanopositioning of high-Q silica microspheres. Optics Express, 2017, 25, 13101.	3.4	8
18	Bandpass transmission spectra of a whispering-gallery microcavity coupled to an ultrathin fiber. Photonics Research, 2017, 5, 362.	7. O	10

#	Article	IF	Citations
19	Cavity ring-up spectroscopy for sensing in a whispering gallery mode resonator., 2017,,.		O
20	Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Optics Letters, 2016, 41, 5266.	3.3	59
21	Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications. Scientific Reports, 2016, 6, 25152.	3.3	50
22	Packaged Optical Add-Drop Filter Based on an Optical Microfiber Coupler and a Microsphere. IEEE Photonics Technology Letters, 2016, 28, 2277-2280.	2.5	29
23	Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator. Applied Physics B: Lasers and Optics, 2016, 122, 1.	2.2	15
24	High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing. Optics Express, 2016, 24, 294.	3.4	80
25	Degenerate four-wave mixing in a silica hollow bottle-like microresonator. Optics Letters, 2016, 41, 575.	3.3	38
26	Linear Laser Tuning Using a Pressure-Sensitive Microbubble Resonator. IEEE Photonics Technology Letters, 2016, 28, 1134-1137.	2.5	41
27	Development of packaged silica microspheres coupled with tapered optical microfibres. Proceedings of SPIE, 2016, , .	0.8	1
28	Flow sensor using a hollow whispering gallery mode microlaser. , 2016, , .		3
29	Frequency Comb Generation at Near Visible Wavelengths in a Microbubble Resonator. , 2016, , .		0
30	Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light. Applied Physics Letters, 2015, 106, .	3. 3	25
31	Raman lasing in a hollow, bottle-like microresonator. Applied Physics Express, 2015, 8, 092001.	2.4	26
32	PDMS quasi-droplet microbubble resonator. , 2015, , .		2
33	Asymmetric response function of the transduction spectrum for a microsphere pendulum. Proceedings of SPIE, 2015, , .	0.8	0
34	Lead-silicate glass optical microbubble resonator. Applied Physics Letters, 2015, 106, .	3.3	15
35	Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators. Optics Letters, 2015, 40, 1834.	3. 3	61
36	Improved sensitivity for pressure sensing in microbubble resonators. , 2015, , .		1

#	Article	lF	CITATIONS
37	Quasi-droplet microbubbles for high resolution sensing applications. Optics Express, 2014, 22, 6881.	3.4	91
38	Liquid core microbubble resonators for highly sensitive temperature sensing. Proceedings of SPIE, $2014, \ldots$	0.8	1
39	Optimization of whispering gallery modes in microbubble resonators for sensing applications. , 2014, , .		5
40	High-Q and Unidirectional Emission Whispering Gallery Modes: Principles and Design. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-6.	2.9	11
41	Highly Sensitive Temperature Measurements With Liquid-Core Microbubble Resonators. IEEE Photonics Technology Letters, 2013, 25, 2350-2353.	2.5	76
42	Thermal-optical properties of microbubbles for sensing applications., 2013,,.		0
43	Optical WGMs THz tuning and mechanical modes in a PDMS double-stem resonator. , 2013, , .		1
44	Sensing and optomechanics using whispering gallery microbubble resonators. , 2013, , .		2
45	Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere. Optics Letters, 2012, 37, 4762.	3.3	43
46	Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 2011, 107, 133601.	7.8	301
47	Observation of microlaser with Er-doped phosphate glass coated microsphere pumped by 780nm. Optics Communications, 2010, 283, 5117-5120.	2.1	30
48	A scheme of quantum repeaters with single atom and cavity-QED. Optics Communications, 2010, 283, 617-621.	2.1	2
49	Anti-bunching from plasmon induced non-blinking single CdSe/ZnS quantum dot. , 2010, , .		0
50	Anti-bunching and luminescence blinking suppression from plasmon-interacted single CdSe/ZnS quantum dot. Optics Express, 2010, 18, 6340.	3.4	24
51	Quantum repeaters free of polarization disturbance and phase noise. Physical Review A, 2009, 79, .	2.5	12
52	Modal coupling strength in a fibre taper coupled silica microsphere. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 085401.	1.5	9
53	Accurately calculating high quality factor of whispering-gallery modes with boundary element method. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2050.	2.1	18
54	Ringing phenomenon in silica microspheres. Chinese Optics Letters, 2009, 7, 299-301.	2.9	32

YONG YANG

#	Article	IF	CITATION
55	Accurately calculating high Q factor of whispering-gallery modes with boundary element method. , 2009, , .		0
56	Directly mapping whispering gallery modes in a microsphere through modal coupling and directional emission. Chinese Optics Letters, 2008, 6, 300-302.	2.9	14
57	Taper-microsphere coupling with numerical calculation of coupled-mode theory. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1895.	2.1	39
58	Quantum phase gate through a dispersive atom-field interaction. Physical Review A, 2007, 75, .	2.5	48
59	Fiber-taper-coupled zeolite cylindrical microcavity with hexagonal cross section. Applied Optics, 2007, 46, 7590.	2.1	4
60	Realizing quantum controlled phase flip through cavity QED. Physical Review A, 2004, 70, .	2.5	122
61	Quantum CPF gates between rare earth ions through measurement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 330, 137-141.	2.1	17