Guofeng Shen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6095484/guofeng-shen-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

209 papers 6,925 citations

46 h-index

/5 g-index

249 ext. papers

8,844 ext. citations

8.5 avg, IF

5.91 L-index

#	Paper	IF	Citations
209	Environmental effects of China@coal ban policy: Results from in situ observations and model analysis in a typical rural area of the Beijing-Tianjin-Hebei region, China. <i>Atmospheric Research</i> , 2022 , 268, 106015	5.4	O
208	High spatial resolved cropland coverage and cultivation category determine neonicotinoid distribution in agricultural soil at the provincial scale. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128476	12.8	O
207	Emission and spatialized health risks for trace elements from domestic coal burning in China <i>Environment International</i> , 2022 , 158, 107001	12.9	2
206	A systematic review of household energy transition in low and middle income countries. <i>Energy Research and Social Science</i> , 2022 , 86, 102463	7.7	2
205	Revisiting the proportion of clean household energy users in rural China by accounting for energy stacking 2022 , 1, 100010		2
204	Household Air Pollution in Rural Area 2022 , 1-19		
203	Failure mode effect and criticality analysis of ultrasound device by classification tracking <i>BMC Health Services Research</i> , 2022 , 22, 429	2.9	1
202	Neglected biomass burning emissions of air pollutants in China-views from the corncob burning test, emission estimation, and simulations. <i>Atmospheric Environment</i> , 2022 , 278, 119082	5.3	2
201	Indoor exposure to selected flame retardants and quantifying importance of environmental, human behavioral and physiological parameters <i>Science of the Total Environment</i> , 2022 , 155422	10.2	
200	Attributed radiative forcing of air pollutants from biomass and fossil burning emissions <i>Environmental Pollution</i> , 2022 , 119378	9.3	2
199	Effects of environmental factors on the distribution of microbial communities across soils and lake sediments in the Hoh Xil Nature Reserve of the Qinghai-Tibetan Plateau. <i>Science of the Total Environment</i> , 2022 , 838, 156148	10.2	1
198	Investigating the relationship between mass concentration of particulate matter and reactive oxygen species based on residential coal combustion source tests. <i>Environmental Research</i> , 2022 , 212, 113499	7.9	
197	Urban residential energy switching in China between 1980 and 2014 prevents 2.2 million premature deaths. <i>One Earth</i> , 2021 , 4, 1602-1613	8.1	2
196	On-site measured emission factors of polycyclic aromatic hydrocarbons for different types of marine vessels <i>Environmental Pollution</i> , 2021 , 297, 118782	9.3	O
195	Synergistic Health Benefits of Household Stove Upgrading and Energy Switching in Rural China. <i>Environmental Science & Environmental Science & Environ</i>	10.3	6
194	Guiding Drug Through Interrupted Bloodstream for Potentiated Thrombolysis by C-Shaped Magnetic Actuation System In Vivo. <i>Advanced Materials</i> , 2021 , e2105351	24	7
193	Environmental Inequality Deepened During the COVID-19 in the Developing World. <i>Environmental Science & Enpironmental </i>	10.3	5

(2021-2021)

192	Spatially Resolved Emission Factors to Reduce Uncertainties in Air Pollutant Emission Estimates from the Residential Sector. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 4483-4493	10.3	7
191	Inhalation exposure to size-segregated fine particles and particulate PAHs for the population burning biomass fuels in the Eastern Tibetan Plateau area. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 211, 111959	7	6
190	PM2.5 reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions. <i>One Earth</i> , 2021 , 4, 448-458	8.1	8
189	Intermediate Volatile Organic Compound Emissions from Residential Solid Fuel Combustion Based on Field Measurements in Rural China. <i>Environmental Science & Environmental Sci</i>	10.3	11
188	Associations of Dietary Exposure to Organochlorine Pesticides from Plant-Origin Foods with Lipid Metabolism and Inflammation in Women: A Multiple Follow-up Study in North China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2021 , 107, 289-295	2.7	2
187	Organochlorine Pesticide Ban Facilitated Reproductive Recovery of Chinese Striped Hamsters. <i>Environmental Science & Environmental Science & Environme</i>	10.3	5
186	Coal Is Dirty, but Where It Is Burned Especially Matters. <i>Environmental Science & Environmental Scien</i>	10.3	6
185	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. <i>Nature Communications</i> , 2021 , 12, 3159	17.4	14
184	Temporal and spatial variation of PM in indoor air monitored by low-cost sensors. <i>Science of the Total Environment</i> , 2021 , 770, 145304	10.2	19
183	Emissions of particulate PAHs from solid fuel combustion in indoor cookstoves. <i>Science of the Total Environment</i> , 2021 , 771, 145411	10.2	11
182	Updated Global Black Carbon Emissions from 1960 to 2017: Improvements, Trends, and Drivers. <i>Environmental Science & Environmental Science & Environme</i>	10.3	10
181	Combined analyses of hygroscopic properties of organic and inorganic components of three representative black carbon samples recovered from pyrolysis. <i>Science of the Total Environment</i> , 2021 , 771, 145393	10.2	O
180	Emission factors of environmentally persistent free radicals in PM from rural residential solid fuels combusted in a traditional stove. <i>Science of the Total Environment</i> , 2021 , 773, 145151	10.2	4
179	Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study. <i>Journal of Shanghai Jiaotong University (Science)</i> , 2021 , 26, 471	0.6	
178	A mechanistic study on removal efficiency of four antibiotics by animal and plant origin precursors-derived biochars. <i>Science of the Total Environment</i> , 2021 , 772, 145468	10.2	19
177	Mass Absorption Efficiency of Black Carbon from Residential Solid Fuel Combustion and Its Association with Carbonaceous Fractions. <i>Environmental Science & Environmental Scie</i>	5 1 9.3	3
176	Source identification of particulate phosphorus in the atmosphere in Beijing. <i>Science of the Total Environment</i> , 2021 , 762, 143174	10.2	1
175	Potential interference on the lipid metabolisms by serum copper in a women population: A repeated measurement study. <i>Science of the Total Environment</i> , 2021 , 760, 143375	10.2	8

174	Application of TiO nanoparticles to reduce bioaccumulation of arsenic in rice seedlings (Oryza sativa L.): A mechanistic study. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124047	12.8	28
173	Stronger impacts of long-term relative to short-term exposure to carbon nanomaterials on soil bacterial communities. <i>Journal of Hazardous Materials</i> , 2021 , 410, 124550	12.8	4
172	Optically Measured Black and Particulate Brown Carbon Emission Factors from Real-World Residential Combustion Predominantly Affected by Fuel Differences. <i>Environmental Science & Technology</i> , 2021 , 55, 169-178	10.3	11
171	Individual and population level protection from particulate matter exposure by wearing facemasks. <i>Environment International</i> , 2021 , 146, 106026	12.9	5
170	Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC from in-home biomass burning. <i>Atmospheric Research</i> , 2021 , 248, 105247	5.4	15
169	Increased air pollution exposure among the Chinese population during the national quarantine in 2020. <i>Nature Human Behaviour</i> , 2021 , 5, 239-246	12.8	16
168	Contribution of Temperature Increase to Restrain the Transmission of COVID-19. <i>Innovation(China)</i> , 2021 , 2, 100071	17.8	7
167	Impacts of Chinese spring festival on household PM pollution and blood pressure of rural residents. <i>Indoor Air</i> , 2021 , 31, 1072-1083	5.4	8
166	Direct and Inverse Reduced-Form Models for Reciprocal Calculation of BC Emissions and Atmospheric Concentrations. <i>Environmental Science & Environmental Science & Environment</i>	10.3	
165	Field-based evidence of changes in household PM2.5 and exposure during the 2020 national quarantine in China. <i>Environmental Research Letters</i> , 2021 , 16, 094020	6.2	2
164	Bioaccessibility and public health risk of heavy Metal(loid)s in the airborne particulate matter of four cities in northern China. <i>Chemosphere</i> , 2021 , 277, 130312	8.4	11
163	Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations. <i>Journal of the Acoustical Society of America</i> , 2021 , 150, 1750	2.2	O
162	Proton resonance frequency-based thermometry for aqueous and adipose tissues. <i>Medical Physics</i> , 2021 , 48, 5651-5660	4.4	
161	Contributions of biomass burning to global and regional SO2 emissions. <i>Atmospheric Research</i> , 2021 , 260, 105709	5.4	7
160	Toward Clean Residential Energy: Challenges and Priorities in Research. <i>Environmental Science & Environmental Science</i>	10.3	1
159	Distribution and partitioning of pyrethroid insecticides in agricultural lands: Critical influencing factors. <i>Environment International</i> , 2021 , 156, 106736	12.9	1
158	Contributions of internal emissions to peaks and incremental indoor PM in rural coal use households. <i>Environmental Pollution</i> , 2021 , 288, 117753	9.3	6
157	Field-based measurements of major air pollutant emissions from typical porcelain kiln in China. <i>Environmental Pollution</i> , 2021 , 288, 117810	9.3	0

(2020-2021)

156	Substantial leakage into indoor air from on-site solid fuel combustion in chimney stoves. <i>Environmental Pollution</i> , 2021 , 291, 118138	9.3	6
155	A critical review of pollutant emission factors from fuel combustion in home stoves. <i>Environment International</i> , 2021 , 157, 106841	12.9	30
154	Early pregnancy loss: Do Per- and polyfluoroalkyl substances matter?. <i>Environment International</i> , 2021 , 157, 106837	12.9	1
153	Light absorption properties and absorption emission factors for indoor biomass burning. <i>Environmental Pollution</i> , 2020 , 267, 115652	9.3	7
152	Substantial Changes in Nitrogen Dioxide and Ozone after Excluding Meteorological Impacts during the COVID-19 Outbreak in Mainland China. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 402-4	ı र्वर् ठ	81
151	Global Sulfur Dioxide Emissions and the Driving Forces. <i>Environmental Science & Emp; Technology</i> , 2020 , 54, 6508-6517	10.3	38
150	Household air pollution from cooking and heating and its impacts on blood pressure in residents living in rural cave dwellings in Loess Plateau of China. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 36677-36687	5.1	10
149	The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. <i>Environment International</i> , 2020 , 142, 105812	12.9	28
148	Improved PRF-based MR thermometry using k-space energy spectrum analysis. <i>Magnetic Resonance in Medicine</i> , 2020 , 84, 3325-3332	4.4	
147	External interference from ambient air pollution on using hair metal(loid)s for biomarker-based exposure assessment. <i>Environment International</i> , 2020 , 137, 105584	12.9	6
146	Fugitive Emissions of CO and PM2.5 from Indoor Biomass Burning in Chimney Stoves Based on a Newly Developed Carbon Balance Approach. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 128	3- 1 134	30
145	Significant ultrafine particle emissions from residential solid fuel combustion. <i>Science of the Total Environment</i> , 2020 , 715, 136992	10.2	14
144	Space heating approaches in Chinese schools: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey-Children (CEERHAPS-C). <i>Energy for Sustainable Development</i> , 2020 , 56, 33-41	5.4	2
143	Sources of volatile organic compounds and policy implications for regional ozone pollution control in an urban location of Nanjing, East China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3905-3919	6.8	29
142	Variation of indoor and outdoor carbonaceous aerosols in rural homes with strong internal solid fuel combustion sources. <i>Atmospheric Pollution Research</i> , 2020 , 11, 992-999	4.5	8
141	Chemical composition, structures, and light absorption of N-containing aromatic compounds emitted from burning wood and charcoal in household cookstoves. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 14077-14090	6.8	5
140	Submicrometer PM1.0 Exposure from Household Burning of Solid Fuels. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 1-6	11	16
139	Missed atmospheric organic phosphorus emitted by terrestrial plants, part 2: Experiment of volatile phosphorus. <i>Environmental Pollution</i> , 2020 , 258, 113728	9.3	3

138	Association of solid fuel use with risk of stunting in children living in China. <i>Indoor Air</i> , 2020 , 30, 264-274	5.4	6
137	A novel model for regional indoor PM quantification with both external and internal contributions included. <i>Environment International</i> , 2020 , 145, 106124	12.9	10
136	PAHs emissions from residential biomass burning in real-world cooking stoves in rural China. <i>Environmental Pollution</i> , 2020 , 267, 115592	9.3	13
135	Quantifying source contributions for indoor CO and gas pollutants based on the highly resolved sensor data. <i>Environmental Pollution</i> , 2020 , 267, 115493	9.3	15
134	Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. <i>Science of the Total Environment</i> , 2020 , 747, 141358	10.2	22
133	Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. <i>Science Advances</i> , 2020 , 6,	14.3	73
132	Differentiated-Rate Clean Heating Strategy with Superior Environmental and Health Benefits in Northern China. <i>Environmental Science & Environmental & Environ</i>	10.3	7
131	PM-Associated Health Impacts of Beehive Coke Oven Ban in China. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 11337-11344	10.3	1
130	Indoor PM2.5 Profiling with a Novel Side-Scatter Indoor Lidar. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 612-616	11	11
129	Characterization of carbon fractions in carbonaceous aerosols from typical fossil fuel combustion sources. <i>Fuel</i> , 2019 , 254, 115620	7.1	21
128	Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. <i>Environment International</i> , 2019 , 127, 550-557	12.9	40
127	Multimedia modeling of the PAH concentration and distribution in the Yangtze River Delta and human health risk assessment. <i>Science of the Total Environment</i> , 2019 , 647, 962-972	10.2	33
126	Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. <i>Nature Communications</i> , 2019 , 10, 3405	17.4	81
125	Maternal ambient air pollution exposure with spatial-temporal variations and preterm birth risk assessment during 2013-2017 in Zhejiang Province, China. <i>Environment International</i> , 2019 , 133, 105242	12.9	30
124	Resolution of the Ongoing Challenge of Estimating Nonpoint Source Neonicotinoid Pollution in the Yangtze River Basin Using a Modified Mass Balance Approach. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 2539-2548	10.3	56
123	Effects of International Fuel Trade on Global Sulfur Dioxide Emissions. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 727-731	11	12
122	Improving regulations on residential emissions and non-criteria hazardous contaminantsIhsights from a field campaign on ambient PM and PAHs in North China Plain. <i>Environmental Science and Policy</i> , 2019 , 92, 201-206	6.2	12
121	Uncertainties in thermal-optical measurements of black carbon: Insights from source and ambient samples. <i>Science of the Total Environment</i> , 2019 , 656, 239-249	10.2	8

120	Fluctuation in time-resolved PM from rural households with solid fuel-associated internal emission sources. <i>Environmental Pollution</i> , 2019 , 244, 304-313	9.3	21	
119	Stacked Use and Transition Trends of Rural Household Energy in Mainland China. <i>Environmental Science & Environmental </i>	10.3	56	
118	Substantial reductions in ambient PAHs pollution and lives saved as a co-benefit of effective long-term PM pollution controls. <i>Environment International</i> , 2018 , 114, 266-279	12.9	39	
117	Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption. <i>Environment International</i> , 2018 , 113, 290-299	12.9	16	
116	Evaluating the Performance of Household Liquefied Petroleum Gas Cookstoves. <i>Environmental Science & Environmental Science & E</i>	10.3	64	
115	Light absorption of organic carbon emitted from burning wood, charcoal, and kerosene in household cookstoves. <i>Environmental Pollution</i> , 2018 , 240, 60-67	9.3	26	
114	Household air pollution and personal exposure to air pollutants in rural China - A review. <i>Environmental Pollution</i> , 2018 , 237, 625-638	9.3	87	
113	Air pollution and inhalation exposure to particulate matter of different sizes in rural households using improved stoves in central China. <i>Journal of Environmental Sciences</i> , 2018 , 63, 87-95	6.4	24	
112	Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China. <i>Atmospheric Environment</i> , 2018 , 191, 1-8	5.3	34	
111	Field-based emission measurements of biomass burning in typical Chinese built-in-place stoves. <i>Environmental Pollution</i> , 2018 , 242, 1587-1597	9.3	37	
110	Emission factors of organic carbon and elemental carbon for residential coal and biomass fuels in China- A new database for 39 fuel-stove combinations. <i>Atmospheric Environment</i> , 2018 , 190, 241-248	5.3	34	
109	Distinguishing Emission-Associated Ambient Air PM Concentrations and Meteorological Factor-Induced Fluctuations. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	30	
108	Winter air pollution by and inhalation exposure to nitrated and oxygenated PAHs in rural Shanxi, north China. <i>Atmospheric Environment</i> , 2018 , 187, 210-217	5.3	16	
107	Ambient air pollution of particles and gas pollutants, and the predicted health risks from long-term exposure to PM in Zhejiang province, China. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 238	353 ¹ 23	844	
106	Residential Coal Combustion as a Source of Levoglucosan in China. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 1665-1674	10.3	51	
105	Characteristics and Source Apportionment of Summertime Volatile Organic Compounds in a Fast Developing City in the Yangtze River Delta, China. <i>Atmosphere</i> , 2018 , 9, 373	2.7	10	
104	Fuel Use Trends for Boiling Water in Rural China (1992-2012) and Environmental Health Implications: A National Cross-Sectional Study. <i>Environmental Science & Environmental S</i>	6 ¹ 0289	94 ¹⁰	
103	Comparison of Reactive Gaseous Mercury Collection by Different Sampling Methods in a Laboratory Test and Field Monitoring. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 600-607	11	9	

102	Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey. <i>Nature Energy</i> , 2018 , 3, 567-573	62.3	147
101	Estimating household air pollution exposures and health impacts from space heating in rural China. <i>Environment International</i> , 2018 , 119, 117-124	12.9	63
100	Household air pollution and personal exposure to nitrated and oxygenated polycyclic aromatics (PAHs) in rural households: Influence of household cooking energies. <i>Indoor Air</i> , 2017 , 27, 169-178	5.4	33
99	Stack and fugitive emissions of major air pollutants from typical brick kilns in China. <i>Environmental Pollution</i> , 2017 , 224, 421-429	9.3	15
98	Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves. <i>Energy & Double Services</i> 2017, 31, 3081-309	90 ¹	31
97	A Laboratory Comparison of Emission Factors, Number Size Distributions, and Morphology of Ultrafine Particles from 11 Different Household Cookstove-Fuel Systems. <i>Environmental Science & Environmental Science & Environment</i>	10.3	47
96	Mutagenicity of particle emissions from solid fuel cookstoves: A literature review and research perspective. <i>Environmental Research</i> , 2017 , 156, 761-769	7.9	12
95	Estimating relative contributions of primary and secondary sources of ambient nitrated and oxygenated polycyclic aromatic hydrocarbons. <i>Atmospheric Environment</i> , 2017 , 159, 126-134	5.3	34
94	Source-oriented risk assessment of inhalation exposure to ambient polycyclic aromatic hydrocarbons and contributions of non-priority isomers in urban Nanjing, a megacity located in Yangtze River Delta, China. <i>Environmental Pollution</i> , 2017 , 224, 796-809	9.3	35
93	Occurrence and geographic distribution of polycyclic aromatic hydrocarbons in agricultural soils in eastern China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 12168-12175	5.1	27
92	Household air pollution and personal inhalation exposure to particles (TSP/PM/PM/PM) in rural Shanxi, North China. <i>Environmental Pollution</i> , 2017 , 231, 635-643	9.3	40
91	Wintertime pollution level, size distribution and personal daily exposure to particulate matters in the northern and southern rural Chinese homes and variation in different household fuels. <i>Environmental Pollution</i> , 2017 , 231, 497-508	9.3	35
90	Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves. <i>Atmospheric Environment</i> , 2017 , 166, 215-223	5.3	41
89	Urban air pollution and health risks of parent and nitrated polycyclic aromatic hydrocarbons in two megacities, southwest China. <i>Atmospheric Environment</i> , 2017 , 166, 441-453	5.3	17
88	Ambient Particles (PM10, PM2.5 and PM1.0) and PM2.5 Chemical Components in Western Yangtze River Delta (YRD): An Overview of Data from 1-year Online Continuous Monitoring at Nanjing. <i>Aerosol Science and Engineering</i> , 2017 , 1, 107-118	1.6	4
87	The Impacts of Emission Control and Regional Transport on PM2.5 Ions and Carbon Components in Nanjing during the 2014 Nanjing Youth Olympic Games. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 730-7	/ 46	11
86	Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China. <i>Indoor Air</i> , 2016 , 26, 246-58	5.4	62
85	Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels. <i>Environmental Pollution</i> , 2016 , 216, 935-942	9.3	26

(2015-2016)

84	Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users. <i>Atmospheric Environment</i> , 2016 , 147, 485-491	5.3	22
83	Household concentrations and personal exposure of PM2.5 among urban residents using different cooking fuels. <i>Science of the Total Environment</i> , 2016 , 548-549, 6-12	10.2	58
82	Changes from traditional solid fuels to clean household energies ©pportunities in emission reduction of primary PM2.5 from residential cookstoves in China. <i>Biomass and Bioenergy</i> , 2016 , 86, 28-35	₅ 5.3	33
81	Dietary intake polycyclic aromatic hydrocarbons (PAHs) and associated cancer risk in a cohort of Chinese urban adults: Inter- and intra-individual variability. <i>Chemosphere</i> , 2016 , 144, 2469-75	8.4	43
80	Field measurement and estimate of gaseous and particle pollutant emissions from cooking and space heating processes in rural households, northern China. <i>Atmospheric Environment</i> , 2016 , 125, 265-2	2₹₹	75
79	Efficiencies and pollutant emissions from forced-draft biomass-pellet semi-gasifier stoves: Comparison of International and Chinese water boiling test protocols. <i>Energy for Sustainable Development</i> , 2016 , 32, 22-30	5.4	45
78	The gas/particle partitioning of nitro- and oxy-polycyclic aromatic hydrocarbons in the atmosphere of northern China. <i>Atmospheric Research</i> , 2016 , 172-173, 66-73	5.4	24
77	Measurement of human CYP1A2 induction by inhalation exposure to benzo(a)pyrene based on in vivo isotope breath method. <i>Environmental Pollution</i> , 2016 , 208, 506-11	9.3	2
76	Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents. <i>Journal of Environmental Sciences</i> , 2016 , 47, 201-210	6.4	18
75	Feasibility of an electromagnetic compatibility method for MRgFUS using a wire mesh screen. <i>Ultrasonics</i> , 2016 , 72, 15-23	3.5	2
74	Properties and cellular effects of particulate matter from direct emissions and ambient sources. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 1075-83	2.3	21
73	Factors influencing the adoption and sustainable use of clean fuels and cookstoves in China -a Chinese literature review. <i>Renewable and Sustainable Energy Reviews</i> , 2015 , 51, 741-750	16.2	49
72	Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China. <i>Journal of Environmental Sciences</i> , 2015 , 37, 1-7	6.4	33
71	Impact of humic acid coating on sorption of naphthalene by biochars. <i>Carbon</i> , 2015 , 94, 946-954	10.4	27
70	Pollutant emissions from improved coal- and wood-fuelled cookstoves in rural households. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	98
69	Direct Energy Consumption Associated Emissions by Rural-to-Urban Migrants in Beijing. <i>Environmental Science & Environmental S</i>	10.3	42
68	Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China. <i>Environmental Pollution</i> , 2015 , 197, 156-164	9.3	75
67	A radiation emission shielding method for high intensity focus ultrasound probes. <i>Bio-Medical Materials and Engineering</i> , 2015 , 26 Suppl 1, S959-66	1	

66	Global organic carbon emissions from primary sources from 1960 to 2009. <i>Atmospheric Environment</i> , 2015 , 122, 505-512	5.3	41
65	The efficacy and hyperthermic release of doxorubicin from liposomal doxorubicin hydrochloride in rabbit VX2 tumours. <i>International Journal of Hyperthermia</i> , 2015 , 31, 900-8	3.7	1
64	Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China. <i>Chemosphere</i> , 2015 , 127, 64-9	8.4	58
63	Seasonal variation of urban carbonaceous aerosols in a typical city Nanjing in Yangtze River Delta, China. <i>Atmospheric Environment</i> , 2015 , 106, 223-231	5.3	75
62	Emission Factors of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Residential Solid Fuel Combustions. <i>Springer Theses</i> , 2014 ,	0.1	1
61	Freeze drying reduces the extractability of organochlorine pesticides in fish muscle tissue by microwave-assisted method. <i>Environmental Pollution</i> , 2014 , 191, 250-2	9.3	8
60	Household fuel use for cooking and heating in China: Results from the first Chinese Environmental Exposure-Related Human Activity Patterns Survey (CEERHAPS). <i>Applied Energy</i> , 2014 , 136, 692-703	10.7	159
59	Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2014 , 49, 171-8	2.3	57
58	Trend in global black carbon emissions from 1960 to 2007. <i>Environmental Science & Environmental Scien</i>	10.3	85
57	Comparison of Carbon Monoxide and Particulate Matter Emissions from Residential Burnings of Pelletized Biofuels and Traditional Solid Fuels. <i>Energy & Emp; Fuels</i> , 2014 , 28, 3933-3939	4.1	25
56	Dietary and inhalation exposure to polycyclic aromatic hydrocarbons and urinary excretion of monohydroxy metabolitesa controlled case study in Beijing, China. <i>Environmental Pollution</i> , 2014 , 184, 515-22	9.3	53
55	Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves. <i>Atmospheric Environment</i> , 2014 , 89, 337-345	5.3	70
54	Contamination and distribution of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons in smoked meat. <i>Environmental Science and Pollution Research</i> , 2014 , 21, 11521-30	5.1	29
53	Indoor/outdoor pollution level and personal inhalation exposure of polycyclic aromatic hydrocarbons through biomass fuelled cooking. <i>Air Quality, Atmosphere and Health</i> , 2014 , 7, 449-458	5.6	34
52	Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China. <i>Atmospheric Environment</i> , 2014 , 83, 14-20	5.3	68
51	Can Coronene and/or Benzo(a)pyrene/Coronene ratio act as unique markers for vehicle emission?. <i>Environmental Pollution</i> , 2014 , 184, 650-3	9.3	8
50	Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China. <i>Environmental Pollution</i> , 2014 , 192, 83-90	9.3	65
49	Emission and Size Distribution of Particle-bound Polycyclic Aromatic Hydrocarbons from Residential Wood Combustion. <i>Biomass and Bioenergy</i> , 2014 , 55, 141-147	5.3	44

(2013-2014)

48	Personal inhalation exposure to polycyclic aromatic hydrocarbons in urban and rural residents in a typical northern city in China. <i>Indoor Air</i> , 2014 , 24, 464-73	5.4	32
47	Exposure to ambient black carbon derived from a unique inventory and high-resolution model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 2459-63	11.5	122
46	Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China. <i>Environmental Pollution</i> , 2014 , 184, 18-24	9.3	70
45	Parent Polycyclic Aromatic Hydrocarbons. <i>Springer Theses</i> , 2014 , 85-137	0.1	
44	Biomass Pellet. Springer Theses, 2014 , 177-191	0.1	
43	Nitro- and Oxygenated PAHs. <i>Springer Theses</i> , 2014 , 139-161	0.1	
42	Research Background. <i>Springer Theses</i> , 2014 , 11-43	0.1	
41	Carbonaceous Particulate Matter. Springer Theses, 2014 , 61-84	0.1	
40	Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions. <i>Atmospheric Environment</i> , 2013 , 79, 79-84	5.3	28
39	Properties and inflammatory effects of various size fractions of ambient particulate matter from Beijing on A549 and J774A.1 cells. <i>Environmental Science & Environmental Sci</i>	10.3	13
38	Hexachlorocyclohexanes (HCHs) in placenta and umbilical cord blood and dietary intake for women in Beijing, China. <i>Environmental Pollution</i> , 2013 , 179, 75-80	9.3	9
37	Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning. <i>Journal of Environmental Sciences</i> , 2013 , 25, 511-9	6.4	27
36	Temporal and spatial trends of residential energy consumption and air pollutant emissions in China. <i>Applied Energy</i> , 2013 , 106, 17-24	10.7	67
35	Emissions of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions. <i>Journal of Environmental Sciences</i> , 2013 , 25, 2072-80	6.4	22
34	Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. <i>Journal of Environmental Sciences</i> , 2013 , 25, 1808-16	6.4	68
33	Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy- polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China. <i>Environmental Science & Description</i> (2013), 47, 2998-3005	10.3	160
32	Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. <i>Environmental Science & Environmental Scie</i>	10.3	499
31	Emission characteristics for polycyclic aromatic hydrocarbons from solid fuels burned in domestic stoves in rural China. <i>Environmental Science & Enp.</i> Technology, 2013 , 47, 14485-94	10.3	94

30	High-resolution mapping of combustion processes and implications for CO₂ emissions. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5189-5203	6.8	131
29	Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural Chinese home through biomass fuelled cooking. <i>Environmental Pollution</i> , 2012 , 169, 160-6	9.3	122
28	Emissions of carbon monoxide and carbon dioxide from uncompressed and pelletized biomass fuel burning in typical household stoves in China. <i>Atmospheric Environment</i> , 2012 , 56, 136-142	5.3	30
27	Carbonaceous Particulate Matter Air Pollution and Human Exposure from Indoor Biomass Burning Practices. <i>Environmental Engineering Science</i> , 2012 , 29, 1038-1045	2	21
26	Global emission of black carbon from motor vehicles from 1960 to 2006. <i>Environmental Science & Environmental & Enviro</i>	10.3	35
25	Emission factors, size distributions, and emission inventories of carbonaceous particulate matter from residential wood combustion in rural China. <i>Environmental Science & Environmental Science & En</i>	10.3	110
24	Black carbon emissions in China from 1949 to 2050. <i>Environmental Science & Environmental Science & En</i>	10.3	201
23	Short Communication: Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Biomass Pellet Burning in a Modern Burner for Cooking in China. <i>Atmospheric Environment</i> , 2012 , 60, 234-237	5.3	37
22	Summer atmospheric polybrominated diphenyl ethers in urban and rural areas of northern China. <i>Environmental Pollution</i> , 2012 , 171, 234-40	9.3	33
21	Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. <i>Environmental Science & Environmental Science & </i>	10.3	136
20	Reductions in emissions of carbonaceous particulate matter and polycyclic aromatic hydrocarbons from combustion of biomass pellets in comparison with raw fuel burning. <i>Environmental Science & Environmental Science</i>	10.3	81
19	Retene emission from residential solid fuels in China and evaluation of retene as a unique marker for soft wood combustion. <i>Environmental Science & Environmental Science & E</i>	10.3	59
18	Effects of different parameters in the fast scanning method for HIFU treatment. <i>Medical Physics</i> , 2012 , 39, 5795-813	4.4	2
17	Emission of oxygenated polycyclic aromatic hydrocarbons from indoor solid fuel combustion. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	93
16	Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gas-particle partitioning. <i>Environmental Science & Environmental Science & Env</i>	10.3	174
15	Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface soils from the Qinghai-Tibetan plateau. <i>Journal of Environmental Monitoring</i> , 2011 , 13, 175-81		68
14	Spatial distribution and seasonal variation of atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Beijing-Tianjin region, North China. <i>Environmental Pollution</i> , 2011 , 159, 287-293	9.3	42
13	A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air. <i>Environmental Pollution</i> , 2011 , 159, 694-9	9.3	26

LIST OF PUBLICATIONS

12	Global time trends in PAH emissions from motor vehicles. <i>Atmospheric Environment</i> , 2011 , 45, 2067-206	57 5.3	70
11	Cell absorption induced desorption of hydrophobic organic contaminants from digested soil residue. <i>Chemosphere</i> , 2011 , 83, 1461-6	8.4	13
10	A study of heating duration and scanning path in focused ultrasound surgery. <i>Journal of Medical Systems</i> , 2011 , 35, 779-86	5.1	7
9	Accumulation dynamics of chlordanes and their enantiomers in cockerels (Gallus gallus) after oral exposure. <i>Environmental Science & Environmental Sci</i>	10.3	10
8	Emission factors of particulate matter and elemental carbon for crop residues and coals burned in typical household stoves in China. <i>Environmental Science & Environmental Sc</i>	10.3	197
7	Emission factors and particulate matter size distribution of polycyclic aromatic hydrocarbons from residential coal combustions in rural Northern China. <i>Atmospheric Environment</i> , 2010 , 44, 5737-5743	5.3	122
6	Dynamic changes of Ehexachlorocyclohexane and its enantiomers in various tissues of Japanese Rabbits (Oyctolagus cuniculus) after oral or dermal exposure. <i>Chemosphere</i> , 2010 , 81, 1486-91	8.4	11
5	Airborne particulates and polycyclic aromatic hydrocarbons (PAHs) in ambient air in Donghe, northern China. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2009 , 44, 854-60	2.3	13
4	A Dynamic Impedance Matching System based on Phase Difference Detection for Ultrasonic Generator in Focused Ultrasound Surgery		1
3	Increased air pollution exposure among the Chinese population during the national quarantine in 2020		3
2	Indoor Coal Combustion for Heating Exacerbates CO2 Exposure Approaching Harmful Levels. Environmental Science and Technology Letters,	11	1
1	Microwave-assisted hot water treatment of sugarcane bagasse for fast pyrolysis. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	О