Makoto Ozawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6095482/publications.pdf

Version: 2024-02-01

103 papers

6,302 citations

32 h-index 69108 77 g-index

106 all docs

106 docs citations

106 times ranked 6437 citing authors

#	Article	IF	CITATIONS
1	A Lethal Case of Natural Infection with the H5N8 Highly Pathogenic Avian Influenza Virus of Clade 2.3.4.4 in a Mandarin Duck., 2022, 2, 32-36.		4
2	Prevalence and organ tropism of craneâ€essociated adenovirus 1 in cranes overwintering on the Izumi plain, Japan. Transboundary and Emerging Diseases, 2022, 69, .	1.3	1
3	Improved method for avian influenza virus isolation from environmental water samples. Transboundary and Emerging Diseases, 2022, 69, .	1.3	5
4	Genetically Diverse Highly Pathogenic Avian Influenza A(H5N1/H5N8) Viruses among Wild Waterfowl and Domestic Poultry, Japan, 2021. Emerging Infectious Diseases, 2022, 28, 1451-1455.	2.0	13
5	Genetic Characterization of H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Falcated Ducks and Environmental Water in Japan in November 2020. Pathogens, 2021, 10, 171.	1.2	19
6	Variation in the HA antigenicity of A(H1N1)pdm09-related swine influenza viruses. Journal of General Virology, 2021, 102, .	1.3	4
7	Analyses of cell death mechanisms related to amino acid substitution at position 95 in the rabies virus matrix protein. Journal of General Virology, 2021, 102, .	1.3	5
8	Establishment of a safe and convenient assay for detection of HA subtype-specific antibodies with PB2 gene-knockout influenza viruses. Virus Research, 2021, 295, 198331.	1.1	1
9	Macrocyclic peptides exhibit antiviral effects against influenza virus HA and prevent pneumonia in animal models. Nature Communications, 2021, 12, 2654.	5.8	21
10	Newly-designed primer pairs for the detection of type 2 porcine reproductive and respiratory syndrome virus genes. Journal of Virological Methods, 2021, 291, 114071.	1.0	3
11	Detection and molecular characterization of Babesia sp. in wild boar (Sus scrofa) from western Japan. Ticks and Tick-borne Diseases, 2021, 12, 101695.	1.1	2
12	Transition in genetic constellations of H3N8 and H4N6 low-pathogenic avian influenza viruses isolated from an overwintering site in Japan throughout different winter seasons. Archives of Virology, 2020, 165, 643-659.	0.9	9
13	Complete Genome Sequences of Two Akabane Virus Strains Causing Bovine Postnatal Encephalomyelitis in Japan. Microbiology Resource Announcements, 2020, 9, .	0.3	1
14	Mutations in the Neuraminidase-Like Protein of Bat Influenza H18N11 Virus Enhance Virus Replication in Mammalian Cells, Mice, and Ferrets. Journal of Virology, 2020, 94, .	1.5	11
15	Identification of interferon-stimulated genes that attenuate Ebola virus infection. Nature Communications, 2020, 11, 2953.	5.8	37
16	Molecular detection of tick-borne protozoan parasites in sika deer (Cervus nippon) from western regions of Japan. Parasitology International, 2020, 79, 102161.	0.6	2
17	Nationwide prevalence of Torque teno sus virus 1 and $k2a$ in pig populations in Japan. Microbiology and Immunology, 2020, 64, 387-391.	0.7	1
18	Chondrosarcoma with undifferentiated neoplastic cell proliferation around the distal tibiotarsus bone in a wild Hooded Crane (<i>Grus monacha</i>). Journal of Veterinary Medical Science, 2020, 82, 1093-1096.	0.3	0

#	Article	IF	CITATIONS
19	Serological survey of influenza A virus infection in Japanese wild boars (<i>Sus scrofa) Tj ETQq1 1 0.784314 rgBT</i>	Overlock	19 Tf 50 74
20	Identification of a distinct lineage of aviadenovirus from crane feces. Virus Genes, 2019, 55, 815-824.	0.7	7
21	Development of a Model of Porcine Epidemic Diarrhea in Microminipigs. Veterinary Pathology, 2019, 56, 711-714.	0.8	3
22	Phylogenetic variations of highly pathogenic H5N6 avian influenza viruses isolated from wild birds in the Izumi plain, Japan, during the 2016–17 winter season. Transboundary and Emerging Diseases, 2019, 66, 797-806.	1.3	20
23	Research of grasping and transporting of objects by cooperation of multiple mobile robots. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2019, 2019, 2A1-B13.	0.0	0
24	Genetic characterization of low-pathogenic avian influenza viruses isolated on the Izumi plain in Japan: possible association of dynamic movements of wild birds with AIV evolution. Archives of Virology, 2018, 163, 911-923.	0.9	15
25	Stimulation of alpha2-adrenergic receptors impairs influenza virus infection. Scientific Reports, 2018, 8, 4631.	1.6	11
26	Distribution of gene segments of the pandemic A(H1N1) 2009 virus lineage in pig populations. Transboundary and Emerging Diseases, 2018, 65, 1502-1513.	1.3	5
27	Identification and molecular characterization of novel primate bocaparvoviruses from wild western lowland gorillas of Moukalaba-Doudou National Park, Gabon. Infection, Genetics and Evolution, 2017, 53, 30-37.	1.0	7
28	Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia. Microbiology and Immunology, 2017, 61, 149-158.	0.7	20
29	Genetic characterization of an avian H4N6 influenza virus isolated from the Izumi plain, Japan. Microbiology and Immunology, 2017, 61, 513-518.	0.7	8
30	Characterization of Highly Pathogenic Avian Influenza Virus A(H5N6), Japan, November 2016. Emerging Infectious Diseases, 2017, 23, 691-695.	2.0	49
31	Nationwide Distribution of Bovine Influenza D Virus Infection in Japan. PLoS ONE, 2016, 11, e0163828.	1.1	50
32	Amino acid changes in PB2 and HA affect the growth of a recombinant influenza virus expressing a fluorescent reporter protein. Scientific Reports, 2016, 6, 19933.	1.6	8
33	Isolation and molecular characterization of porcine epidemic diarrhea viruses collected in Japan in 2014. Archives of Virology, 2016, 161, 2189-2195.	0.9	15
34	Molecular epidemiological study of adenovirus infecting western lowland gorillas and humans in and around Moukalaba-Doudou National Park (Gabon). Virus Genes, 2016, 52, 671-678.	0.7	8
35	Selection of antigenically advanced variants of seasonal influenza viruses. Nature Microbiology, 2016, 1, 16058.	5.9	61
36	IRES-mediated translation of foot-and-mouth disease virus (FMDV) in cultured cells derived from FMDV-susceptible and -insusceptible animals. BMC Veterinary Research, 2016, 12, 66.	0.7	13

#	Article	IF	CITATIONS
37	Contribution of the interaction between the rabies virus P protein and I-kappa B kinase ϵ to the inhibition of type I IFN induction signalling. Journal of General Virology, 2016, 97, 316-326.	1.3	24
38	Efficient Isolation of Swine Influenza Viruses by Age-Targeted Specimen Collection. Journal of Clinical Microbiology, 2015, 53, 1331-1338.	1.8	14
39	Mutations in influenza A virus during amantadine-oseltamivir combination therapy. Journal of Pediatric Infectious Diseases, 2015, 05, 243-248.	0.1	0
40	Genetic and serological surveillance for non-primate hepacivirus in horses in Japan. Veterinary Microbiology, 2015, 179, 219-227.	0.8	31
41	Identification of mammalian-adapting mutations in the polymerase complex of an avian H5N1 influenza virus. Nature Communications, 2015, 6, 7491.	5.8	91
42	Multi-spectral fluorescent reporter influenza viruses (Color-flu) as powerful tools for in vivo studies. Nature Communications, 2015, 6, 6600.	5.8	98
43	Isolation and characterization of influenza A viruses from environmental water at an overwintering site of migratory birds in Japan. Archives of Virology, 2015, 160, 3037-3052.	0.9	28
44	A Bivalent Vaccine Based on a PB2-Knockout Influenza Virus Protects Mice From Secondary Pneumococcal Pneumonia. Journal of Infectious Diseases, 2015, 212, 1939-1948.	1.9	2
45	Full genome sequences of torque teno sus virus strains that coinfected a pig with postweaning multisystemic wasting syndrome in Japan: implications for genetic diversity. Archives of Virology, 2015, 160, 3067-3074.	0.9	4
46	Molecular Determinants of Virulence and Stability of a Reporter-Expressing H5N1 Influenza A Virus. Journal of Virology, 2015, 89, 11337-11346.	1.5	18
47	Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, $2014/15$. Eurosurveillance, 2015 , 20 , .	3.9	44
48	Recent insights into hepatitis B virus–host interactions. Journal of Medical Virology, 2014, 86, 925-932.	2.5	22
49	A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus. Archives of Virology, 2014, 159, 1067-1077.	0.9	12
50	Detection sensitivity of influenza rapid diagnostic tests. Microbiology and Immunology, 2014, 58, 600-606.	0.7	17
51	Hemozoin as a novel adjuvant for inactivated whole virion influenza vaccine. Vaccine, 2014, 32, 5295-5300.	1.7	20
52	B-Cell-Intrinsic Hepatitis C Virus Expression Leads to B-Cell-Lymphomagenesis and Induction of NF-κB Signalling. PLoS ONE, 2014, 9, e91373.	1.1	19
53	Characterization of H7N9 influenza A viruses isolated from humans. Nature, 2013, 501, 551-555.	13.7	371
54	Cross Talk Between Animal and Human Influenza Viruses. Annual Review of Animal Biosciences, 2013, 1, 21-42.	3.6	30

#	Article	IF	Citations
55	A Novel Bivalent Vaccine Based on a PB2-Knockout Influenza Virus Protects Mice from Pandemic H1N1 and Highly Pathogenic H5N1 Virus Challenges. Journal of Virology, 2013, 87, 7874-7881.	1.5	25
56	Synergistic Effect of the PDZ and p85 \hat{l}^2 -Binding Domains of the NS1 Protein on Virulence of an Avian H5N1 Influenza A Virus. Journal of Virology, 2013, 87, 4861-4871.	1.5	52
57	Intrinsic Temperature Sensitivity of Influenza C Virus Hemagglutinin-Esterase-Fusion Protein. Journal of Virology, 2013, 87, 1288-1288.	1.5	0
58	Genomic polymorphisms in 3βâ€hydroxysterol Δ24â€reductase promoter sequences. Microbiology and Immunology, 2013, 57, 179-184.	0.7	6
59	A cell-based screening system for influenza A viral RNA transcription/replication inhibitors. Scientific Reports, 2013, 3, 1106.	1.6	19
60	The Highly Conserved Arginine Residues at Positions 76 through 78 of Influenza A Virus Matrix Protein M1 Play an Important Role in Viral Replication by Affecting the Intracellular Localization of M1. Journal of Virology, 2012, 86, 1522-1530.	1.5	27
61	A Replication-Incompetent PB2-Knockout Influenza A Virus Vaccine Vector. Journal of Virology, 2012, 86, 4123-4128.	1.5	30
62	Intrinsic Temperature Sensitivity of Influenza C Virus Hemagglutinin-Esterase-Fusion Protein. Journal of Virology, 2012, 86, 13108-13111.	1.5	14
63	Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature, 2012, 486, 420-428.	13.7	1,290
64	Competitive Incorporation of Homologous Gene Segments of Influenza A Virus into Virions. Journal of Virology, 2012, 86, 10200-10202.	1.5	31
65	Characterization In Vitro and In Vivo of Pandemic (H1N1) 2009 Influenza Viruses Isolated from Patients. Journal of Virology, 2012, 86, 9361-9368.	1.5	15
66	Reverse Genetics of Influenza Viruses. Methods in Molecular Biology, 2012, 865, 193-206.	0.4	17
67	Mutations in PA, NP, and HA of a pandemic (H1N1) 2009 influenza virus contribute to its adaptation to mice. Virus Research, 2011 , 158 , 124 - 129 .	1.1	76
68	Taming influenza viruses. Virus Research, 2011, 162, 8-11.	1.1	13
69	In vitro selection of influenza B viruses with reduced sensitivity to neuraminidase inhibitors. Clinical Microbiology and Infection, 2011, 17, 1332-1335.	2.8	8
70	Effect of an Asparagine-to-Serine Mutation at Position 294 in Neuraminidase on the Pathogenicity of Highly Pathogenic H5N1 Influenza A Virus. Journal of Virology, 2011, 85, 4667-4672.	1.5	32
71	Subclinical Brain Injury Caused by H5N1 Influenza Virus Infection. Journal of Virology, 2011, 85, 5202-5207.	1.5	63
72	Replication-incompetent influenza A viruses that stably express a foreign gene. Journal of General Virology, 2011, 92, 2879-2888.	1.3	64

#	Article	IF	Citations
73	Frequency of Drug-resistant Viruses and Virus Shedding in Pediatric Influenza Patients Treated With Neuraminidase Inhibitors. Clinical Infectious Diseases, 2011, 52, 432-437.	2.9	53
74	Avian-Type Receptor-Binding Ability Can Increase Influenza Virus Pathogenicity in Macaques. Journal of Virology, 2011, 85, 13195-13203.	1.5	30
75	Impact of Amino Acid Mutations in PB2, PB1-F2, and NS1 on the Replication and Pathogenicity of Pandemic (H1N1) 2009 Influenza Viruses. Journal of Virology, 2011, 85, 4596-4601.	1.5	58
76	Significance of Seasonal Influenza Viruses in the Stool of Pediatric Patients. Pediatric Infectious Disease Journal, 2010, 29, 578-579.	1.1	11
77	A cross-reactive neutralizing monoclonal antibody protects mice from H5N1 and pandemic (H1N1) 2009 virus infection. Antiviral Research, 2010, 88, 249-255.	1.9	49
78	High Level of Genetic Compatibility between Swine-Origin H1N1 and Highly Pathogenic Avian H5N1 Influenza Viruses. Journal of Virology, 2010, 84, 10918-10922.	1.5	97
79	Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses. PLoS Pathogens, 2010, 6, e1000786.	2.1	73
80	Sensitivity of Influenza Rapid Diagnostic Tests to H5N1 and 2009 Pandemic H1N1 Viruses. Journal of Clinical Microbiology, 2010, 48, 2872-2877.	1.8	64
81	Pathogenicity of highly pathogenic avian H5N1 influenza A viruses isolated from humans between 2003 and 2008 in northern Vietnam. Journal of General Virology, 2010, 91, 2485-2490.	1.3	38
82	Characterization of Oseltamivir-Resistant 2009 H1N1 Pandemic Influenza A Viruses. PLoS Pathogens, 2010, 6, e1001079.	2.1	87
83	Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus. PLoS Pathogens, 2010, 6, e1001034.	2.1	299
84	T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 882-887.	3.3	185
85	Ostrich Involvement in the Selection of H5N1 Influenza Virus Possessing Mammalian-Type Amino Acids in the PB2 Protein. Journal of Virology, 2009, 83, 13015-13018.	1.5	30
86	Mutational Analysis of Conserved Amino Acids in the Influenza A Virus Nucleoprotein. Journal of Virology, 2009, 83, 4153-4162.	1.5	94
87	Region Required for Protein Expression from the Stop-Start Pentanucleotide in the M Gene of Influenza B Virus. Journal of Virology, 2009, 83, 5939-5942.	1.5	11
88	Selection of H5N1 Influenza Virus PB2 during Replication in Humans. Journal of Virology, 2009, 83, 5278-5281.	1.5	99
89	Incorporation of influenza A virus genome segments does not absolutely require wild-type sequences. Journal of General Virology, 2009, 90, 1734-1740.	1.3	31
90	Nucleotide Sequence Requirements at the $5\hat{a}\in^2$ End of the Influenza A Virus M RNA Segment for Efficient Virus Replication. Journal of Virology, 2009, 83, 3384-3388.	1.5	69

#	Article	IF	CITATIONS
91	In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature, 2009, 460, 1021-1025.	13.7	1,002
92	An Adenovirus Vector-Mediated Reverse Genetics System for Influenza A Virus Generation. Journal of Virology, 2007, 81, 9556-9559.	1.5	19
93	Contributions of Two Nuclear Localization Signals of Influenza A Virus Nucleoprotein to Viral Replication. Journal of Virology, 2007, 81, 30-41.	1.5	194
94	Identification and Characterization of Peptides Binding to Newcastle Disease Virus by Phage Display. Journal of Veterinary Medical Science, 2005, 67, 1237-1241.	0.3	12
95	Tyrosine phosphorylation of p120(ctn) in v-Src transfected L cells depends on its association with E-cadherin and reduces adhesion activity. Journal of Cell Science, 2001, 114 , $503-12$.	1.2	52
96	Identification of the Region of α-Catenin That Plays an Essential Role in Cadherin-mediated Cell Adhesion. Journal of Biological Chemistry, 1998, 273, 29524-29529.	1.6	43
97	The Membrane-proximal Region of the E-Cadherin Cytoplasmic Domain Prevents Dimerization and Negatively Regulates Adhesion Activity. Journal of Cell Biology, 1998, 142, 1605-1613.	2.3	160
98	Altered Cell Adhesion Activity by Pervanadate Due to the Dissociation of \hat{l}_{\pm} -Catenin from the E-CadherinÂ-Catenin Complex. Journal of Biological Chemistry, 1998, 273, 6166-6170.	1.6	183
99	Cloning of an Alternative Form of Plakoglobin (\hat{l}^3 -Catenin) Lacking the Fourth Armadillo Repeat1. Journal of Biochemistry, 1995, 118, 836-840.	0.9	17
100	Cloning of a Human Homologue of Mouse Reticulocalbin Reveals Conservation of Structural Domains in the Novel Endoplasmic Reticulum Resident Ca2+-Binding Protein with Multiple EF-Hand Motifs1. Journal of Biochemistry, 1995, 117, 1113-1119.	0.9	29
101	Structure of the Gene Encoding Mouse Reticulocalbin, a Novel Endoplasmic Reticulum-Resident Ca2+-Binding Protein with Multiple EF-Hand Motifs1. Journal of Biochemistry, 1995, 118, 154-160.	0.9	10
102	Reticulocalbin, a novel endoplasmic reticulum resident Ca(2+)-binding protein with multiple EF-hand motifs and a carboxyl-terminal HDEL sequence. Journal of Biological Chemistry, 1993, 268, 699-705.	1.6	101
103	A teratocarcinoma glycoprotein carrying a developmentally regulated carbohydrate marker is a member of the immunoglobulin gene superfamily. Journal of Biological Chemistry, 1988, 263, 3059-62.	1.6	32