Jong-Hwan Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094903/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of an Al2O3 Layer and Sn@Al2O3 Core-Shell Nanoparticles by Using a Silicon Oxide/Aluminum Bilayer. Journal of the Korean Physical Society, 2020, 76, 171-175.	0.7	1
2	Generation of White Light by Hybridization of Red–Green–Blue–Luminescent Materials. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900411.	1.8	0
3	Fabrication of Sn@Al2O3 Core-shell Nanoparticles for Stable Nonvolatile Memory Applications. Materials, 2019, 12, 3111.	2.9	3
4	Fabrication of ZnO Nanosheets by Chemical Annealing of Pre-Synthesized Zn Sheets. Journal of the Korean Physical Society, 2019, 74, 182-186.	0.7	0
5	Ni atalyzed Growth of Silica Nanowires From Amorphous Silicon Films and Growth Mechanism. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700378.	1.8	1
6	Fabrication of polycrystalline silicon films by Alâ€induced crystallization of siliconâ€rich oxide films. Physica Status Solidi - Rapid Research Letters, 2016, 10, 668-672.	2.4	8
7	Growth of aluminum oxide nanorods using sandwich structures composed of Al and SiO _{ <i>x</i>} layers. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 406-409.	1.8	0
8	Self-assembly and growth mechanism of au nanoparticle chains in silica nanowires. Journal of the Korean Physical Society, 2015, 66, 828-831.	0.7	0
9	Enhanced light emission from Si nanocrystals produced using SiOx/SiO2 multilayered silicon-rich oxides. Applied Surface Science, 2015, 344, 213-216.	6.1	4
10	Synthesis and memory properties of a self-assembled Al@Al ₂ O ₃ core-shell nanoparticle layer for floating gate devices. Applied Physics Letters, 2014, 104, 233101.	3.3	6
11	Enhanced formation of Si nanocrystals in silicon-rich oxide implanted with Ni. Materials Letters, 2014, 136, 237-240.	2.6	5
12	Alternative vapor–liquid–solid process in Au-assisted growth of silica nanowires. Materials Letters, 2014, 123, 131-134.	2.6	5
13	Synthesis and enhanced light-emission of Si nanocrystals embedded in silicon oxidenanowires. Materials Letters, 2013, 96, 166-169.	2.6	4
14	Synthesis of silica nanowires by PECVD at low temperature using Zn as a catalyst. Applied Physics A: Materials Science and Processing, 2012, 108, 509-513.	2.3	9
15	Memory properties of Al-based nanoparticle floating gate for nonvolatile memory applications. Journal of the Korean Physical Society, 2012, 61, 799-802.	0.7	3
16	Synthesis of Cobalt-Based Nanocrystal Layer in Silicon Dioxide for Nonvolatile Memory Applications. Journal of Nanoscience and Nanotechnology, 2011, 11, 1042-1046.	0.9	0
17	Oxygen-passivated enhancement of photoluminescence from SiO2 films containing Si nanocrystals. Current Applied Physics, 2011, 11, 827-829.	2.4	7
18	Synthesis and charge storage properties of double-layered NiSi nanocrystals. Journal of Nanoparticle Research, 2010, 12, 2387-2391.	1.9	2

Jong-Hwan Yoon

#	Article	IF	CITATIONS
19	Charge Storage Properties of Nickel Silicide Nanocrystal Layer Embedded in Silicon Dioxide. Materials Research Society Symposia Proceedings, 2009, 1160, 1.	0.1	Ο
20	Memory Properties of Nickel Silicide Nanocrystal Layer for Possible Application to Nonvolatile Memory Devices. IEEE Transactions on Electron Devices, 2009, 56, 3236-3239.	3.0	3
21	Hydrogen-induced-intrinsic transport in undoped microcrystalline silicon. Applied Physics A: Materials Science and Processing, 2009, 97, 257-261.	2.3	2
22	Synthesis of nickel disilicide quantum dots in silicon dioxide films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314, 365-368.	4.7	1
23	Synthesis of Nickel Disilicide Nanocrystal Monolayers for Nonvolatile Memory Applications. Materials Research Society Symposia Proceedings, 2008, 1071, 1.	0.1	0
24	Photoluminescence from Si nanocrystals exposed to a hydrogen plasma. Journal of Applied Physics, 2008, 104, 083518.	2.5	15
25	Formation of nickel-based nanocrystal monolayers for nonvolatile memory applications. Applied Physics Letters, 2008, 92, 253108.	3.3	25
26	Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films. Materials Research Society Symposia Proceedings, 2006, 910, 2.	0.1	1
27	Growth of crystalline grains in microcrystalline silicon films. Physical Review B, 2006, 73, .	3.2	4
28	Direct growth of nickel disilicide nanocrystals in silicon dioxide films. Journal of Applied Physics, 2006, 99, 116106.	2.5	12
29	Photoluminescence in microcrystalline silicon films grown from argon diluted silane. Journal of Non-Crystalline Solids, 2004, 338-340, 465-468.	3.1	5
30	Origin of the Low-Energy Photoluminescence in Microcrystalline Silicon Films. Materials Research Society Symposia Proceedings, 2003, 762, 1931.	0.1	0
31	Light-induced effects in hydrogenated amorphous silicon films grown from high hydrogen dilution of silane. Journal of Non-Crystalline Solids, 2002, 299-302, 487-491.	3.1	5
32	Correlation between the improved stability and low temperature hydrogen effusion in hydrogenated amorphous silicon films grown from hydrogen dilution of silane. Solid State Communications, 2002, 124, 289-292.	1.9	1
33	Increasing The Dark Conductivity Activation Energy in Undoped Microcrystalline Silicon by Post-Growth Anneals. Materials Research Society Symposia Proceedings, 2001, 664, 2361.	0.1	5
34	Intrinsic microcrystalline silicon by postgrowth anneals. Journal of Materials Research, 2001, 16, 1531-1534.	2.6	4
35	Hindering the light-induced instability in a-Si:H by hydrogen clusters. Journal of Non-Crystalline Solids, 2000, 266-269, 455-458.	3.1	4
36	Light-induced Stability of Layered Amorphous Hydrogenated Silicon Grown with Alternating Substrate Temperature. Materials Research Society Symposia Proceedings, 1996, 420, 387.	0.1	0

3

Jong-Hwan Yoon

#	Article	IF	CITATIONS
37	Pulsed-Light-Induced Metastable Defect Creation in Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1995, 377, 373.	0.1	3
38	Recombination Process in the As-Deposited State of Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1993, 297, 455.	0.1	1
39	Effect of Deposition-Induced Annealable Defects on Light-Induced Defect Generation in a-Si:H. Materials Research Society Symposia Proceedings, 1993, 297, 565.	0.1	Ο
40	Annealing of Metastable Recombination Centers in Hydrogenated Amorphous Silicon. Materials Research Society Symposia Proceedings, 1992, 258, 413.	0.1	0
41	Crystallization of silicon oxide films using Al as a catalyst. Journal of the Korean Physical Society, 0, , 1.	0.7	0