Phil De Luna

List of Publications by Citations

Source: https://exaly.com/author-pdf/6094690/phil-de-luna-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

46 10,074 34 52 h-index g-index papers citations 6.28 13,363 21.9 52 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
46	Homogeneously dispersed multimetal oxygen-evolving catalysts. <i>Science</i> , 2016 , 352, 333-7	33.3	1459
45	Enhanced electrocatalytic CO reduction via field-induced reagent concentration. <i>Nature</i> , 2016 , 537, 382	:-38.4	997
44	CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. <i>Science</i> , 2018 , 360, 783-787	33.3	980
43	What would it take for renewably powered electrosynthesis to displace petrochemical processes?. <i>Science</i> , 2019 , 364,	33.3	749
42	What Should We Make with CO2 and How Can We Make It?. <i>Joule</i> , 2018 , 2, 825-832	27.8	546
41	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. <i>Nature Catalysis</i> , 2018 , 1, 103-110	36.5	479
40	Designing materials for electrochemical carbon dioxide recycling. <i>Nature Catalysis</i> , 2019 , 2, 648-658	36.5	442
39	Dopant-induced electron localization drives CO reduction to C hydrocarbons. <i>Nature Chemistry</i> , 2018 , 10, 974-980	17.6	435
38	Steering post-CII coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. <i>Nature Catalysis</i> , 2018 , 1, 421-428	36.5	348
37	Accelerated discovery of CO electrocatalysts using active machine learning. <i>Nature</i> , 2020 , 581, 178-183	50.4	328
36	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. <i>Nature Chemistry</i> , 2018 , 10, 149-154	17.6	328
35	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. <i>Nature Energy</i> , 2019 , 4, 107-114	62.3	264
34	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. <i>Joule</i> , 2017 , 1, 794-805	27.8	263
33	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. <i>ACS Catalysis</i> , 2016 , 6, 8115-8120	13.1	212
32	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. <i>Nature Catalysis</i> , 2018 , 1, 946-951	36.5	205
31	Molecular enhancement of heterogeneous CO reduction. <i>Nature Materials</i> , 2020 , 19, 266-276	27	195
30	Metal-Organic Frameworks Mediate Cu Coordination for Selective CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11378-11386	16.4	188

(2018-2017)

29	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9359-9363	16.4	183
28	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO. <i>Nature Communications</i> , 2018 , 9, 3828	17.4	164
27	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. <i>Nature Catalysis</i> , 2020 , 3, 985-992	36.5	149
26	A Surface Reconstruction Route to High Productivity and Selectivity in CO Electroreduction toward C Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, e1804867	24	131
25	2D Metal Oxyhalide-Derived Catalysts for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2018 , 30, e1802858	24	123
24	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. <i>Nature Catalysis</i> , 2019 , 2, 251-258	36.5	111
23	A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification. <i>Science Advances</i> , 2015 , 1, e1500421	14.3	97
22	Copper adparticle enabled selective electrosynthesis of n-propanol. <i>Nature Communications</i> , 2018 , 9, 4614	17.4	86
21	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. <i>Joule</i> , 2019 , 3, 1703-1718	27.8	78
20	Use machine learning to find energy materials. <i>Nature</i> , 2017 , 552, 23-27	50.4	63
19	Biofunctionalized conductive polymers enable efficient CO electroreduction. <i>Science Advances</i> , 2017 , 3, e1700686	14.3	61
18	High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection. <i>Nano Letters</i> , 2017 , 17, 1289-1295	11.5	49
17	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11582-11585	13	42
16	Electrocatalytic Rate Alignment Enhances Syngas Generation. <i>Joule</i> , 2019 , 3, 257-264	27.8	40
15	Robust Antibacterial Activity of Tungsten Oxide (WO) Nanodots. <i>Chemical Research in Toxicology</i> , 2019 , 32, 1357-1366	4	39
14	Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6482-6490	16.4	38
13	Structural influence of proteins upon adsorption to MoS nanomaterials: comparison of MoS force field parameters. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 3039-3045	3.6	36
12	Chemical-to-Electricity Carbon: Water Device. <i>Advanced Materials</i> , 2018 , 30, e1707635	24	32

11	Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. <i>ACS Applied Materials & Acs Applied & Acs Applied</i>	9.5	30
10	A density functional theory investigation into the binding of the antioxidants ergothioneine and ovothiol to copper. <i>Journal of Physical Chemistry A</i> , 2013 , 117, 4057-65	2.8	17
9	Three-Dimensional Cathodes for Electrochemical Reduction of CO: From Macro- to Nano-Engineering. <i>Nanomaterials</i> , 2020 , 10,	5.4	13
8	QSAR Accelerated Discovery of Potent Ice Recrystallization Inhibitors. <i>Scientific Reports</i> , 2016 , 6, 26403	4.9	12
7	A molecular dynamics examination on mutation-induced catalase activity in coral allene oxide synthase. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 14635-41	3.4	11
6	Snatching the Ligand or Destroying the Structure: Disruption of WW Domain by Phosphorene. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 1362-1370	3.8	10
5	Imparting gas selective and pressure dependent porosity into a non-porous solid via coordination flexibility. <i>Materials Horizons</i> , 2019 , 6, 1883-1891	14.4	10
4	Metal-Free Hydrogen-Bonded Polymers Mimic Noble Metal Electrocatalysts. <i>Advanced Materials</i> , 2020 , 32, e1902177	24	10
3	A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) study on Ornithine Cyclodeaminase (OCD): a tale of two iminiums. <i>International Journal of Molecular Sciences</i> , 2012, 13, 12994-3011	6.3	9
2	How increasing proton and electron conduction benefits electrocatalytic CO2 reduction. <i>Matter</i> , 2021 , 4, 1555-1577	12.7	4
1	How CO2-to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study. <i>Energies</i> , 2021 , 14, 6957	3.1	3