List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6094080/publications.pdf Version: 2024-02-01

ΜανοιΚιιμαρ

#	Article	IF	CITATIONS
1	Structural, magnetic, optical, and photocatalytic properties of Ca–Ni doped BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2022, 33, 16856-16873.	2.2	2
2	Effect of Na/Co co-substituted on structural, magnetic, optical and photocatalytic properties of BiFeO3 nanoparticles. Materials Chemistry and Physics, 2021, 263, 124402.	4.0	10
3	Influence of Na substitution on structural, magnetic, optical and photocatalytic properties of bismuth ferrite nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 20191-20209.	2.2	17
4	Band gap tuning and optical properties of BiFeO3 nanoparticles. Materials Today: Proceedings, 2020, 28, 168-171.	1.8	14
5	Influence of Cr3+ doping on multiferroic properties in the morphotropic phase boundary compositions of BiFeO3–PbTiO3 system. Journal of Materials Science: Materials in Electronics, 2019, 30, 16539-16547.	2.2	2
6	Optical properties of Gd3+ substituted CoFe2O4 Nanoparticles. AIP Conference Proceedings, 2019, , .	0.4	2
7	Parameters dependent synthesis of zinc stannate nanowires using CVD and its porphyrin dye loaded optical studies. Vacuum, 2019, 161, 201-208.	3.5	5
8	Ca–Li substitution driven structural, dynamics of electron density, magnetic and optical properties of BiFeO3 nanoparticles. Journal of Alloys and Compounds, 2019, 811, 151965.	5.5	15
9	Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 2019, 479, 317-325.	2.3	48
10	Nanomaterials for high frequency device and photocatalytic applications: Mg-Zn-Ni ferrites. Journal of Alloys and Compounds, 2018, 746, 532-539.	5.5	57
11	Structural, magnetic, dielectric, vibrational and optical properties of Zr substituted Bi0.90Gd0.10FeO3 multiferroics. Journal of Alloys and Compounds, 2018, 735, 684-691.	5.5	5
12	Effect of Pr ³⁺ substitution on structural, dielectric, electrical and magnetic properties of BiFe _{0.80} Ti _{0.20} O ₃ [Bi _{1-x} Pr _x Fe _{0.80} Ti _{0.20} O ₃ , x = 0.05, 0. ceramics. Integrated Ferroelectrics, 2018, 193, 1-13.	10 <mark>, 0</mark> .15]	3
13	Microstructural and transport characterization of Co2MnSi thin films. AIP Conference Proceedings, 2018, , .	0.4	1
14	Optical and electrical studies of barium stannate micro rods synthesized via chemical process. AlP Conference Proceedings, 2018, , .	0.4	0
15	Room temperature ferromagnetism and electrical properties of Mn-doped Zn2SnO4 nanorods. Superlattices and Microstructures, 2018, 120, 161-169.	3.1	15
16	Structural, magnetic and dielectric properties of Gd3+ substituted NiFe2O4 nanoparticles. Journal of Alloys and Compounds, 2018, 768, 287-297.	5.5	38
17	Antibacterial activity and ferroelectric properties of Nd3+ doped ZnO nanostructured materials. AIP Conference Proceedings, 2018, , .	0.4	1
18	Room temperature multiferroic properties of rapid liquid phase sintered Pb+2 doped bismuth ferrite. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
19	Effect of Ca and Ni co-substitution on structural and magnetic properties of BiFeO3 nanoparticles. AlP Conference Proceedings, 2018, , .	0.4	0
20	Gd doped Mn-Zn soft ferrite nanoparticles: Superparamagnetism and its correlation with other physical properties. Journal of Magnetism and Magnetic Materials, 2017, 432, 208-217.	2.3	68
21	Effect of Zr substitution on structural, magnetic, and optical properties of Bi0.9Dy0.1Fe1â^'xZrxO3 multiferroic ceramics prepared by rapid liquid phase sintering method. Ceramics International, 2017, 43, 4904-4909.	4.8	7
22	Enhancement in A-B super-exchange interaction with Mn substitution in Mg-Zn ferrites as a heating source in hyperthermia applications. Ceramics International, 2017, 43, 13661-13669.	4.8	79
23	Effect of Pr substitution on structural, magnetic, and optical properties of Bi1â^'xPrxFe0.80Ti0.20O3 multiferroic ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 1011-1014.	2.2	2
24	Effect of Gd3+ substitution on structural, magnetic, dielectric and optical properties of nanocrystalline CoFe2O4. Journal of Magnetism and Magnetic Materials, 2017, 426, 252-263.	2.3	83
25	Raman spectroscopy probed spin-two phonon coupling and improved magnetic and optical properties in Dy and Zr substituted BiFeO3 nanoparticles. Journal of Alloys and Compounds, 2017, 692, 236-242.	5.5	19
26	Substitution driven structural and magnetic properties and evidence of spin phonon coupling in Sr-doped BiFeO ₃ nanoparticles. RSC Advances, 2016, 6, 68028-68040.	3.6	34
27	Superparamagnetic La doped Mn–Zn nano ferrites: dependence on dopant content and crystallite size. Materials Research Express, 2016, 3, 075001.	1.6	81
28	Band-gap tuning and magnetic properties of heterovalent ions (Ba, Sr and Ca) substituted BiFeO3 nanoparticles. AIP Conference Proceedings, 2016, , .	0.4	4
29	Optical and magnetic properties of Co2+ substituted NiFe2O4 nanoparticles. AIP Conference Proceedings, 2016, , .	0.4	1
30	Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. Journal of Alloys and Compounds, 2016, 684, 569-581.	5.5	158
31	Influence of Co 2 + Substitution on Cation Distribution and on Different Properties of NiFe 2 O 4 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1561-1572.	1.8	16
32	Substitution driven structural and magnetic transformation in Ca-doped BiFeO ₃ nanoparticles. RSC Advances, 2016, 6, 43080-43090.	3.6	68
33	Effect of Ni2+ substitution on structural, magnetic, dielectric and optical properties of mixed spinel CoFe2O4 nanoparticles. Ceramics International, 2016, 42, 18154-18165.	4.8	31
34	A comparative study on structural, vibrational, dielectric and magnetic properties of microcrystalline BiFeO3, nanocrystalline BiFeO3 and core–shell structured BiFeO3@SiO2 nanoparticles. Journal of Alloys and Compounds, 2016, 666, 454-467.	5.5	46
35	Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. Journal of Alloys and Compounds, 2016, 654, 460-466.	5.5	106
36	Phase Evolution, Magnetic, Optical, and Dielectric Properties of Zrâ€6ubstituted Bi _{0.9} Gd _{0.1} FeO ₃ Multiferroics. Journal of the American Ceramic Society, 2015, 98, 1884-1890.	3.8	19

#	Article	IF	CITATIONS
37	Structural, magnetic and optical properties of Ce substituted BiFeO3 nanoparticles. Ceramics International, 2015, 41, 5705-5712.	4.8	51
38	Raman spectroscopy and enhanced magnetic and dielectric properties of Pr and Ti codoped BiFeO3 ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 530-538.	2.2	13
39	Structural modification and enhanced magnetic properties with two phonon modes in Ca–Co codoped BiFeO3 nanoparticles. Ceramics International, 2015, 41, 14306-14314.	4.8	17
40	Enhanced Saturation Magnetization in Cobalt Doped Ni-Zn Ferrite Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3557-3564.	1.8	19
41	Low temperature ferromagnetic ordering and dielectric properties of Bi1-xDyxFeO3 ceramics. Ceramics International, 2015, 41, 3227-3236.	4.8	49
42	Electron spin resonance studies and improved magnetic properties of Gd substituted BiFeO3 ceramics. Ceramics International, 2015, 41, 777-786.	4.8	26
43	Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics. Ceramics International, 2015, 41, 2389-2398.	4.8	56
44	Spin-phonon coupling and improved multiferroic properties of Zr substituted BiFeO3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2014, 25, 4286-4299.	2.2	16
45	Electron spin resonance study and improved magnetic and dielectric properties of Gd–Ti co-substituted BiFeO3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 5366-5374.	2.2	17
46	Optical properties of Y and Ti co-substituted BiFeO3 multiferroics. , 2014, , .		2
47	Linking Catalyst Phase with CNT Morphology and its Subsequent Field Emission Characteristics: An Optimization Study. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 375-383.	2.1	1
48	Effect of Y3+ substitution on structural, electrical and optical properties of BiFeO3 ceramics. Ceramics International, 2014, 40, 1971-1977.	4.8	25
49	Structural transition, magnetic and optical properties of Pr and Ti co-doped BiFeO3 ceramics. Journal of Magnetism and Magnetic Materials, 2014, 349, 264-267.	2.3	37
50	Effect of Non-magnetic lons Substitution on Structural, Magnetic and Optical Properties of BiFeO3 Nanoparticles. Journal of Superconductivity and Novel Magnetism, 2014, 27, 1867-1871.	1.8	24
51	Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. Journal of Physics and Chemistry of Solids, 2014, 75, 105-108.	4.0	79
52	Evidence of spin-two phonon coupling and improved multiferroic behavior of Bi1â^'xDyxFeO3 nanoparticles. Ceramics International, 2014, 40, 13347-13356.	4.8	21
53	Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. Journal of Molecular Structure, 2014, 1076, 55-62.	3.6	304
54	Structural, magnetic and optical properties of Ho–Co codoped BiFeO3 nanoparticles. Materials Letters, 2014, 132, 327-330.	2.6	12

#	Article	IF	CITATIONS
55	Stable and luminescent wurtzite CdS, ZnS and CdS/ZnS core/shell quantum dots. Applied Physics A: Materials Science and Processing, 2014, 117, 1249-1258.	2.3	15
56	Influence of Mn doping on structural, electrical and magnetic properties of (0.90)BiFeO3–(0.10)BaTiO3 composite. Journal of Materials Science: Materials in Electronics, 2014, 25, 2199-2209.	2.2	23
57	Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceramics International, 2014, 40, 7805-7816.	4.8	65
58	Electron spin resonance probed enhanced magnetization and optical properties of Sm doped BiFeO3 nanoparticles. Materials Letters, 2014, 137, 285-288.	2.6	15
59	Effect of Sr substitution on structural, dielectric, magnetic and magnetoelectric properties of rapid liquid sintered BiFe0.8Ti0.2O3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25, 4743-4749.	2.2	6
60	Structural, Dielectric, Ferroelectric and Magnetic Properties of Bi0.80A0.20FeO3 (A=Pr,Y) Multiferroics. Journal of Superconductivity and Novel Magnetism, 2013, 26, 657-661.	1.8	19
61	Multiferroic and optical properties of Pr-substituted bismuth ferrite ceramics. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1442-1447.	1.8	23
62	Structural, magnetic and optical properties of Bi1â^'xDyxFeO3 nanoparticles synthesized by sol–gel method. Materials Letters, 2013, 96, 71-73.	2.6	30
63	Structural, raman, dielectric, magnetic and magnetoelectric properties of Ba and Mn doped BiFeO <inf>3</inf> nanoparticles. , 2013, , .		3
64	Structural, vibrational, optical and magnetic properties of sol–gel derived Nd doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2013, 24, 5102-5110.	2.2	49
65	Rietveld analysis, magnetic, vibrational and impedance properties of (Bilâ^'xPrx)(Felâ^'xZrx)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 5023-5034.	2.2	9
66	Structural, Optical and Multiferroic Properties of BiFeO3 Nanoparticles Synthesized by Soft Chemical Route. Journal of Superconductivity and Novel Magnetism, 2013, 26, 443-448.	1.8	59
67	Structural, vibrational, optical, magnetic and dielectric properties of Bi 1â^'x Ba x FeO 3 nanoparticles. Ceramics International, 2013, 39, 6399-6405.	4.8	94
68	Structural, magnetic, and optical properties of Pr and Zr codoped BiFeO3 multiferroic ceramics. Journal of Applied Physics, 2012, 112, .	2.5	97
69	Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Communications, 2012, 152, 525-529.	1.9	147
70	Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics. Materials Letters, 2008, 62, 1159-1161.	2.6	71
71	Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization. Applied Physics Letters, 2007, 91, .	3.3	132
72	Observation of room temperature magnetoelectric coupling in Pb1â^'xBax(Fe0.5Ti0.5)O3 system. Journal of Applied Physics, 2007, 101, 054105.	2.5	12

#	Article	IF	CITATIONS
73	Observation of room temperature magnetoelectric coupling in a Ni substituted Pb1â^'xNixTiO3 system. Journal of Applied Physics, 2007, 102, 076107.	2.5	12
74	Study of dielectric, magnetic, ferroelectric and magnetoelectric properties in the PbMnxTi1â^'xO3system at room temperature. Journal of Physics Condensed Matter, 2007, 19, 242202.	1.8	72
75	Magnetic field induced phase transition in multiferroic BiFe1â^xTixO3 ceramics prepared by rapid liquid phase sintering. Applied Physics Letters, 2007, 91, 112911.	3.3	56
76	Magnetoelectric characterization of xNi0.75Co0.25Fe2O4–(1â^'x)BiFeO3 nanocomposites. Journal of Physics and Chemistry of Solids, 2007, 68, 1791-1795.	4.0	77
77	Synthesis of nanocrystalline xCuFe2O4–(1â^'x)BiFeO3 magnetoelectric composite by chemical method. Materials Letters, 2007, 61, 2089-2092.	2.6	32
78	Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. Journal of Applied Physics, 2006, 100, 074111.	2.5	204
79	The effect of Ti substitution on magnetoelectric coupling at room temperature in the BiFe1â^'xTixO3system, Journal of Physics Condensed Matter, 2006, 18, 1503-1508,	1.8	49