
Ana M Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collagen for bone tissue regeneration. Acta Biomaterialia, 2012, 8, 3191-3200.	4.1	686
2	Polymeric membranes for guided bone regeneration. Biotechnology Journal, 2011, 6, 1187-1197.	1.8	244
3	Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydrate Polymers, 2017, 163, 280-291.	5.1	99
4	Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Materials Science and Engineering C, 2018, 91, 236-246.	3.8	95
5	Biomimetic hydrogels designed for cartilage tissue engineering. Biomaterials Science, 2021, 9, 4246-4259.	2.6	86
6	Manufacture and Characterisation of Porous PLA Scaffolds. Procedia CIRP, 2016, 49, 33-38.	1.0	58
7	In Vitro Deposition of Hydroxyapatite on Cortical Bone Collagen Stimulated by Deformation-Induced Piezoelectricity. Biomacromolecules, 2007, 8, 941-948.	2.6	55
8	Antibacterial effectiveness meets improved mechanical properties: Manuka honey/gellan gum composite hydrogels for cartilage repair. Carbohydrate Polymers, 2018, 198, 462-472.	5.1	55
9	Multilayer Nanoscale Encapsulation of Biofunctional Peptides to Enhance Bone Tissue Regeneration In Vivo. Advanced Healthcare Materials, 2017, 6, 1601182.	3.9	53
10	Biosynthetic PCL-graft-Collagen Bulk Material for Tissue Engineering Applications. Materials, 2017, 10, 693.	1.3	45
11	Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. International Journal of Molecular Sciences, 2018, 19, 1755.	1.8	44
12	Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan–Rose Bengal photosensitizer. Surface and Coatings Technology, 2013, 223, 92-97.	2.2	40
13	Nanostructured scaffold with biomimetic and antibacterial properties for wound healing produced by â€~green electrospinning'. Colloids and Surfaces B: Biointerfaces, 2018, 172, 233-243.	2.5	38
14	A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. International Journal of Molecular Sciences, 2020, 21, 912.	1.8	37
15	Impact of Collagen/Heparin Multilayers for Regulating Bone Cellular Functions. ACS Applied Materials & Interfaces, 2016, 8, 29923-29932.	4.0	32
16	The interplay between chondrocyte spheroids and mesenchymal stem cells boosts cartilage regeneration within a 3D natural-based hydrogel. Scientific Reports, 2019, 9, 14630.	1.6	31
17	Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Scientific Reports, 2018, 8, 15130.	1.6	30
18	Centrifugally spun PHBV micro and nanofibres. Materials Science and Engineering C, 2017, 76, 190-195.	3.8	28

ANA M FERREIRA

#	Article	IF	CITATIONS
19	Alginate-based hydrogels functionalised at the nanoscale using layer-by-layer assembly for potential cartilage repair. Biomaterials Science, 2017, 5, 1922-1931.	2.6	26
20	Reactive jet impingement bioprinting of high cell density gels for bone microtissue fabrication. Biofabrication, 2019, 11, 015014.	3.7	26
21	Assessment of Migration of Human MSCs through Fibrin Hydrogels as a Tool for Formulation Optimisation. Materials, 2018, 11, 1781.	1.3	24
22	Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. International Journal of Biological Macromolecules, 2018, 117, 199-208.	3.6	22
23	Bioinspired porous membranes containing polymer nanoparticles for wound healing. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	20
24	Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions. Colloids and Surfaces B: Biointerfaces, 2017, 159, 445-453.	2.5	19
25	Strategies for Enhancing Polyester-Based Materials for Bone Fixation Applications. Molecules, 2021, 26, 992.	1.7	19
26	Osteoinduction of 3D printed particulate and short-fibre reinforced composites produced using PLLA and apatite-wollastonite. Composites Science and Technology, 2019, 184, 107834.	3.8	18
27	Multilayer nanoscale functionalization to treat disorders and enhance regeneration of bone tissue. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 22-38.	1.7	18
28	pH-Triggered Adhesiveness and Cohesiveness of Chondroitin Sulfate-Catechol Biopolymer for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 712.	2.0	17
29	Enhancement of Fatty Acidâ€based Polyurethanes Cytocompatibility by Nonâ€covalent Anchoring of Chondroitin Sulfate. Macromolecular Bioscience, 2012, 12, 1697-1705.	2.1	16
30	Cytocompatible polyurethanes from fatty acids through covalent immobilization of collagen. Reactive and Functional Polymers, 2013, 73, 690-697.	2.0	16
31	Collagen/Polyurethane-Coated Bioactive Glass: Early Achievements towards the Modelling of Healthy and Osteoporotic Bone. Key Engineering Materials, 0, 631, 184-189.	0.4	15
32	Temporary Single-Cell Coating for Bioprocessing with a Cationic Polymer. ACS Applied Materials & Interfaces, 2017, 9, 12967-12974.	4.0	15
33	Short phosphate glass fiber - PLLA composite to promote bone mineralization. Materials Science and Engineering C, 2019, 104, 109929.	3.8	14
34	Development of Natural-Based Bone Cement for a Controlled Doxorubicin-Drug Release. Frontiers in Bioengineering and Biotechnology, 2020, 8, 754.	2.0	14
35	Biomimetic soluble collagen purified from bones. Biotechnology Journal, 2012, 7, 1386-1394.	1.8	12
36	Study on the interaction between gelatin and polyurethanes derived from fatty acids. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1036-1046.	2.1	12

ANA M FERREIRA

#	Article	IF	CITATIONS
37	High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Progress in Biomedical Engineering, 2020, 2, 022001.	2.8	12
38	Surface Characterization of Electro-Assisted Titanium Implants: A Multi-Technique Approach. Materials, 2020, 13, 705.	1.3	12
39	Data on Manuka Honey/Gellan Gum composite hydrogels for cartilage repair. Data in Brief, 2018, 20, 831-839.	0.5	11
40	A Thermally Reformable Protein Polymer. CheM, 2020, 6, 3132-3151.	5.8	9
41	Processing of Sr2+ Containing Poly L-Lactic Acid-Based Hybrid Composites for Additive Manufacturing of Bone Scaffolds. Frontiers in Materials, 2020, 7, .	1.2	8
42	Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation. Biofabrication, 2020, 12, 045024.	3.7	8
43	Droplet-based bioprinting enables the fabrication of cell–hydrogel–microfibre composite tissue precursors. Bio-Design and Manufacturing, 2022, 5, 512-528.	3.9	8
44	Valuable effect of Manuka Honey in increasing the printability and chondrogenic potential of a naturally derived bioink. Materials Today Bio, 2022, 14, 100287.	2.6	8
45	A Chondrosphere-Based Scaffold Free Approach to Manufacture an <i>In Vitro</i> Articular Cartilage Model. Tissue Engineering - Part A, 2022, 28, 84-93.	1.6	7
46	Electrochemical Influence of Collagen Piezoelectric Effect in Bone Healing. Materials Science Forum, 2007, 544-545, 981-984.	0.3	6
47	A novel apatite-inspired Sr5(PO4)2SiO4 plasma-sprayed coating on Ti alloy promoting biomineralization, osteogenesis and angiogenesis. Ceramics International, 2022, 48, 10979-10989.	2.3	6
48	Biomimetic Properties of Force-Spun PHBV Membranes Functionalised with Collagen as Substrates for Biomedical Application. Coatings, 2019, 9, 350.	1.2	5
49	Hydrogels of engineered bacterial fimbriae can finely tune 2D human cell culture. Biomaterials Science, 2021, 9, 2542-2552.	2.6	5
50	Effects of alumina on the thermal processing of apatite-wollastonite: Changes in sintering, microstructure and crystallinity of compressed pellets. Journal of the European Ceramic Society, 2020, 40, 6107-6113.	2.8	4
51	Bioprinting of Cellâ€Laden Hydrogels onto Titanium Alloy Surfaces to Produce a Bioactive Interface. Macromolecular Bioscience, 2022, 22, e2200071.	2.1	3
52	Short-Term Effects of Microstructured Surfaces: Role in Cell Differentiation toward a Contractile Phenotype. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 92-99.	0.7	2
53	Influencia de la piezoelectricidad del colágeno tipo I en la adhesión celular. IFMBE Proceedings, 2007, , 659-662.	0.2	1
54	Caracterización mediante FTIR y DSC de la interacción colágeno — hidroxiapatita. IFMBE Proceedings, 2007, , 1246-1249.	0.2	1

#	Article	IF	CITATIONS
55	Scaffolds for blood vessel tissue engineering. , 2019, , 659-684.		0
56	Droplet-Based Bioprinting Enables the Fabrication of Cell-Hydrogel-Microfibre Composite Tissue Precursors. SSRN Electronic Journal, 0, , .	0.4	0
57	Microvalve Bioprinting of MSC-Chondrocyte Co-Cultures. Cells, 2021, 10, 3329.	1.8	Ο