
Keiko Kuroda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pathogenicity and Distribution of <i>Fusarium solani</i> Isolates Associated with <i>Erythrina</i> Decline in Japan. Plant Disease, 2020, 104, 731-742.	1.4	5
2	First report of Fusarium solani species complex as a causal agent of Erythrina variegata decline and death after gall formation by Quadrastichus erythrinae on Okinawa Island, Japan. Journal of General Plant Pathology, 2017, 83, 344-357.	1.0	4
3	Hydraulic Architecture and Function of Tall Trees. Journal of the Japanese Forest Society, 2017, 99, 74-83.	0.2	3
4	Oviposition site selection by Japanese gypsy moth (<i>Lymatria dispar japonica</i>) in a warm-temperate secondary forest in western Japan. Forest Science and Technology, 2016, 12, 130-136.	0.8	3
5	Function and structure of leaves contributing to increasing water storage with height in the tallest Cryptomeria japonica trees of Japan. Trees - Structure and Function, 2016, 30, 141-152.	1.9	31
6	How to Detect Xylem Sap Flow in a Tree. Trends in the Sciences, 2016, 21, 2_62-2_65.	0.0	0
7	Pushing the limits to tree height: could foliar water storage compensate for hydraulic constraints in <i><scp>S</scp>equoia sempervirens</i> ?. Functional Ecology, 2014, 28, 1087-1093.	3.6	56
8	Monitoring of xylem embolism and dysfunction by the acoustic emission technique in <i>Pinus thunbergii</i> inoculated with the pine wood nematode <i>Bursaphelenchus xylophilus</i> . Journal of Forest Research, 2012, 17, 58-64.	1.4	5
9	Magnetic Resonance Micro-Imaging of Xylem Sap Distribution and Necrotic Lesions in tree Stems. IAWA Journal, 2006, 27, 3-17.	2.7	24
10	Inhibiting factors of symptom development in several Japanese red pine (Pinus densiflora) families selected as resistant to pine wilt. Journal of Forest Research, 2004, 9, 217-224.	1.4	45
11	Responses ofQuercus sapwood to infection with the pathogenic fungus of a new wilt disease vectored by the ambrosia beetlePlatypus quercivorus. Journal of Wood Science, 2001, 47, 425-429.	1.9	63
12	Seasonal Rhythms of Xylem Growth Measured by the Wounding Method and With a Band-Dendrometer: An Instance of Chamaecyparis Obtusa. IAWA Journal, 1997, 18, 291-299.	2.7	16
13	Terpenoids causing tracheid-cavitation in Pinus thunbergii infected by the pine wood nematode (Bursaphelenchus xylophilus) Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1989, 55, 170-178.	0.1	40
14	Effects of cavitation on the development of pine wilt disease caused by Bursaphelenchus xylophilus Nihon Shokubutsu Byori Gakkaiho = Annals of the Phytopathological Society of Japan, 1988, 54, 606-615.	0.1	52
15	Hardwood Identificatlon Using a Microcomputer and Iawa Codes. IAWA Journal, 1987, 8, 69-77.	2.7	5
16	Wound Effects on Cytodifferentiation in Hardwood Xylem. IAWA Journal, 1985, 6, 107-118.	2.7	11
17	Wound Effects on Xylem Cell Differentiation in a Conifer. IAWA Journal, 1984, 5, 295-305.	2.7	21