Samuel S Hinman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093361/publications.pdf

Version: 2024-02-01

713332 623574 21 610 14 21 citations g-index h-index papers 24 24 24 930 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suspended Collagen Hydrogels to Replicate Human Colonic Epithelial Cell Interactions with Immune Cells. Advanced Biology, 2022, 6, .	1.4	3
2	In vitro generation of self-renewing human intestinal epithelia over planar and shaped collagen hydrogels. Nature Protocols, 2021 , 16 , 352 - 382 .	5. 5	41
3	Hyperglycemia minimally alters primary self-renewing human colonic epithelial cells while TNFα-promotes severe intestinal epithelial dysfunction. Integrative Biology (United Kingdom), 2021, 13, 139-152.	0.6	1
4	Stem/Proliferative and Differentiated Cells within Primary Murine Colonic Epithelium Display Distinct Intracellular Free Ca ²⁺ Signal Codes. Advanced Healthcare Materials, 2021, 10, e2101318.	3.9	2
5	Magnetically-propelled fecal surrogates for modeling the impact of solid-induced shear forces on primary colonic epithelial cells. Biomaterials, 2021, 276, 121059.	5.7	3
6	Microphysiological system design: simplicity is elegance. Current Opinion in Biomedical Engineering, 2020, 13, 94-102.	1.8	16
7	Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sensors, 2019, 4, 1774-1782.	4.0	21
8	Photopatterned Membranes and Chemical Gradients Enable Scalable Phenotypic Organization of Primary Human Colon Epithelial Models. Analytical Chemistry, 2019, 91, 15240-15247.	3.2	19
9	Primary Cell-Derived Intestinal Models: Recapitulating Physiology. Trends in Biotechnology, 2019, 37, 744-760.	4.9	79
10	Bioengineered Systems and Designer Matrices That Recapitulate the Intestinal Stem Cell Niche. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 440-453.e1.	2.3	57
11	Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Analytical Chemistry, 2018, 90, 19-39.	3.2	113
12	Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosensors and Bioelectronics, 2018, 100, 304-311.	5.3	77
13	DNA Linkers and Diluents for Ultrastable Gold Nanoparticle Bioconjugates in Multiplexed Assay Development. Analytical Chemistry, 2017, 89, 4272-4279.	3.2	23
14	Mix and Match: Coassembly of Amphiphilic Dendrimers and Phospholipids Creates Robust, Modular, and Controllable Interfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1029-1035.	4.0	17
15	Selective protein recognition in supported lipid bilayer arrays by tailored, dual-mode deep cavitand hosts. Soft Matter, 2017, 13, 3966-3974.	1.2	6
16	Plasmonic Sensing with 3D Printed Optics. Analytical Chemistry, 2017, 89, 12626-12630.	3.2	42
17	Plasmonic nanodisc arrays on calcinated titania for multimodal analysis of phosphorylated peptides. RSC Advances, 2017, 7, 48068-48076.	1.7	3
18	Bioinspired assemblies and plasmonic interfaces for electrochemical biosensing. Journal of Electroanalytical Chemistry, 2016, 781, 136-146.	1.9	10

#	Article	IF	CITATION
19	Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules. Nanoscale, 2016, 8, 1665-1675.	2.8	37
20	On-Demand Formation of Supported Lipid Membrane Arrays by Trehalose-Assisted Vesicle Delivery for SPR Imaging. ACS Applied Materials & Interfaces, 2015, 7, 17122-17130.	4.0	23
21	Nanoglassified, Optically-Active Monolayer Films of Gold Nanoparticles for in Situ Orthogonal Detection by Localized Surface Plasmon Resonance and Surface-Assisted Laser Desorption/Ionization-MS. Analytical Chemistry, 2014, 86, 11942-11945.	3.2	16