
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093313/publications.pdf Version: 2024-02-01

KEAT TEONOLEE

#	Article	IF	CITATIONS
1	Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 2010, 28, 500-518.	6.0	1,054
2	Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008, 33, 1646-1653.	4.5	981
3	Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 2012, 30, 673-690.	6.0	797
4	Oil palm biomass as a sustainable energy source: A Malaysian case study. Energy, 2009, 34, 1225-1235.	4.5	393
5	Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. Journal of Environmental Chemical Engineering, 2013, 1, 658-666.	3.3	310
6	Current status and challenges on microalgae-based carbon capture. International Journal of Greenhouse Gas Control, 2012, 10, 456-469.	2.3	293
7	Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnology Advances, 2011, 29, 124-141.	6.0	284
8	Palm oil: Addressing issues and towards sustainable development. Renewable and Sustainable Energy Reviews, 2009, 13, 420-427.	8.2	267
9	Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability. Applied Energy, 2009, 86, S189-S196.	5.1	247
10	Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 2007, 35, 5692-5701.	4.2	243
11	Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101, 4834-4841.	4.8	243
12	A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 2010, 14, 842-848.	8.2	227
13	Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future. Renewable and Sustainable Energy Reviews, 2009, 13, 1456-1464.	8.2	208
14	Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 2018, 171, 1416-1429.	4.4	200
15	Energy for sustainable development in Malaysia: Energy policy and alternative energy. Energy Policy, 2006, 34, 2388-2397.	4.2	177
16	Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment. Renewable and Sustainable Energy Reviews, 2012, 16, 5280-5284.	8.2	174
17	Cerbera odollam (sea mango) oil as a promising non-edible feedstock for biodiesel production. Fuel, 2009, 88, 1148-1150.	3.4	172
18	Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Applied Catalysis B: Environmental, 2009, 93, 134-139.	10.8	168

#	Article	IF	CITATIONS
19	The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renewable and Sustainable Energy Reviews, 2016, 60, 155-172.	8.2	167
20	A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending. Energy, 2013, 58, 296-304.	4.5	164
21	Banana biomass as potential renewable energy resource: A Malaysian case study. Renewable and Sustainable Energy Reviews, 2010, 14, 798-805.	8.2	162
22	Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Science of the Total Environment, 2019, 688, 112-128.	3.9	162
23	Biodiesel production from palm oil via heterogeneous transesterification. Biomass and Bioenergy, 2009, 33, 271-276.	2.9	145
24	Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel, 2010, 89, 527-530.	3.4	142
25	A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via Response Surface Methodology. Bioresource Technology, 2010, 101, 965-969.	4.8	139
26	Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production. Applied Energy, 2012, 94, 303-308.	5.1	138
27	Algae biorefinery: Review on a broad spectrum of downstream processes and products. Bioresource Technology, 2019, 292, 121964.	4.8	138
28	Role of energy policy in renewable energy accomplishment: The case of second-generation bioethanol. Energy Policy, 2008, 36, 3360-3365.	4.2	132
29	Membrane technology as a promising alternative in biodiesel production: A review. Biotechnology Advances, 2012, 30, 1364-1380.	6.0	129
30	Pretreatment of lignocellulosic palm biomass using a solvent-ionic liquid [BMIM]Cl for glucose recovery: An optimisation study using response surface methodology. Carbohydrate Polymers, 2011, 83, 1862-1868.	5.1	124
31	Investigation of physical and chemical properties of potential edible and non-edible feedstocks for biodiesel production, a comparative analysis. Renewable and Sustainable Energy Reviews, 2013, 21, 749-755.	8.2	123
32	Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx. Journal of Hazardous Materials, 2010, 176, 1093-1096.	6.5	122
33	Effects of free fatty acids, water content and co-solvent on biodiesel production by supercritical methanol reaction. Journal of Supercritical Fluids, 2010, 53, 88-91.	1.6	122
34	Supercritical ethanol technology for the production of biodiesel: Process optimization studies. Journal of Supercritical Fluids, 2009, 49, 286-292.	1.6	121
35	Catalytic cracking of bio-oil to organic liquid product (OLP). Bioresource Technology, 2010, 101, 8855-8858.	4.8	121
36	Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of solvents. Bioresource Technology, 2010, 101, 7641-7647.	4.8	120

#	Article	IF	CITATIONS
37	Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 2017, 103, 197-207.	4.3	115
38	Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: An optimization study. Energy, 2014, 78, 53-62.	4.5	114
39	Mixed methanol–ethanol technology to produce greener biodiesel from waste cooking oil: A breakthrough for SO42â^'/SnO2–SiO2 catalyst. Fuel Processing Technology, 2011, 92, 1639-1645.	3.7	113
40	Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. Separation and Purification Technology, 2005, 45, 50-60.	3.9	106
41	A comparative study on the energy policies in Japan and Malaysia in fulfilling their nations' obligations towards the Kyoto Protocol. Energy Policy, 2009, 37, 4771-4778.	4.2	105
42	Immobilization as a feasible method to simplify the separation of microalgae from water for biodiesel production. Chemical Engineering Journal, 2012, 191, 263-268.	6.6	104
43	Reactive Extraction of <i>Jatropha curcas</i> L. Seed for Production of Biodiesel: Process Optimization Study. Environmental Science & Technology, 2010, 44, 4361-4367.	4.6	98
44	Life cycle assessment for the production of biodiesel: A case study in Malaysia for palm oil versus jatropha oil. Biofuels, Bioproducts and Biorefining, 2009, 3, 601-612.	1.9	97
45	A review on supercritical fluids (SCF) technology in sustainable biodiesel production: Potential and challenges. Renewable and Sustainable Energy Reviews, 2011, 15, 2452-2456.	8.2	93
46	Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control, 2013, 14, 169-176.	2.3	93
47	Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development. Renewable and Sustainable Energy Reviews, 2012, 16, 4574-4587.	8.2	92
48	An overview on global warming in Southeast Asia: CO 2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews, 2013, 28, 71-81.	8.2	90
49	An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. Journal of Supercritical Fluids, 2010, 53, 82-87.	1.6	89
50	Production of FAME by palm oil transesterification via supercritical methanol technology. Biomass and Bioenergy, 2009, 33, 1096-1099.	2.9	88
51	Evaluation and optimization of organosolv pretreatment using combined severity factors and response surface methodology. Biomass and Bioenergy, 2011, 35, 4025-4033.	2.9	82
52	Heterogeneous catalyzed biodiesel production from Moringa oleifera oil. Fuel Processing Technology, 2010, 91, 1525-1529.	3.7	78
53	Removal of sulfur dioxide by fly ash/CaO/CaSO4 sorbents. Chemical Engineering Journal, 2005, 114, 171-177.	6.6	77
54	Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: An optimisation study using response surface methodology. Bioresource Technology, 2010, 101, 9335-9341.	4.8	75

#	Article	IF	CITATIONS
55	Subcritical water liquefaction of oil palm fruit press fiber for the production of bio-oil: Effect of catalysts. Bioresource Technology, 2010, 101, 745-751.	4.8	73
56	Optimization of microporous palm shell activated carbon production for flue gas desulphurization: Experimental and statistical studies. Bioresource Technology, 2009, 100, 1614-1621.	4.8	72
57	Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresource Technology, 2010, 101, 7362-7367.	4.8	72
58	CO2 removal using membrane gas absorption. International Journal of Greenhouse Gas Control, 2010, 4, 495-498.	2.3	70
59	Recent development and economic analysis of glycerol-free processes via supercritical fluid transesterification for biodiesel production. Renewable and Sustainable Energy Reviews, 2014, 31, 61-70.	8.2	69
60	Sustainable utilization of oil palm wastes for bioactive phytochemicals for the benefit of the oil palm and nutraceutical industries. Phytochemistry Reviews, 2013, 12, 173-190.	3.1	68
61	A green catalyst for biodiesel production from jatropha oil: Optimization study. Biomass and Bioenergy, 2011, 35, 1739-1746.	2.9	67
62	Accelerating transesterification reaction with biodiesel as co-solvent: A case study for solid acid sulfated tin oxide catalyst. Fuel, 2010, 89, 3866-3870.	3.4	66
63	Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology, 2009, 90, 958-964.	3.7	65
64	Production of biodiesel from Jatropha curcas L. oil catalyzed by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>SO</mml:mtext></mml:mrow><mr catalyst: Effect of interaction between process variables. Bioresource Technology, 2011, 102,</mr </mml:msubsup></mml:mrow></mml:math 	nl:m 4c8 w><	mm ds nn>4
65	4285-4289. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Environmental Research, 2020, 188, 109828.	3.7	64
66	Implementation of biofuels in Malaysian transportation sector towards sustainable development: A case study of international cooperation between Malaysia and Japan. Renewable and Sustainable Energy Reviews, 2012, 16, 1790-1800.	8.2	63
67	Croton megalocarpus oil: A feasible non-edible oil source for biodiesel production. Bioresource Technology, 2010, 101, 7000-7004.	4.8	61
68	Catalytic transesterification of high viscosity crude microalgae lipid to biodiesel: Effect of co-solvent. Fuel Processing Technology, 2013, 110, 242-248.	3.7	61
69	Advances of macroalgae biomass for the third generation of bioethanol production. Chinese Journal of Chemical Engineering, 2020, 28, 502-517.	1.7	61
70	Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. Journal of Cleaner Production, 2016, 130, 68-73.	4.6	60
71	Optimum conditions for preparation of flue gas desulfurization absorbent from rice husk ash. Fuel, 2005, 84, 143-151.	3.4	59
72	Second-generation bioethanol as a sustainable energy source in Malaysia transportation sector: Status, potential and future prospects. Renewable and Sustainable Energy Reviews, 2011, 15, 4521-4536.	8.2	59

#	Article	IF	CITATIONS
73	Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview. RSC Advances, 2013, 3, 9070.	1.7	59

Process optimization and kinetic study for biodiesel production from non-edible sea mango (Cerbera) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

75	Flocculation of Chlorella vulgaris by shell waste-derived bioflocculants for biodiesel production: Process optimization, characterization and kinetic studies. Science of the Total Environment, 2020, 702, 134995.	3.9	58
76	Optimization of supercritical dimethyl carbonate (SCDMC) technology for the production of biodiesel and value-added glycerol carbonate. Fuel, 2010, 89, 3833-3839.	3.4	57
77	Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study. Applied Energy, 2013, 103, 712-720.	5.1	56
78	Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production. Energy Conversion and Management, 2014, 88, 399-410.	4.4	55
79	Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis. Energy Conversion and Management, 2018, 164, 363-373.	4.4	55
80	Second-generation bio-ethanol (SGB) from Malaysian palm empty fruit bunch: Energy and exergy analyses. Bioresource Technology, 2010, 101, 5719-5727.	4.8	54
81	Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO—Process study. Chemical Engineering Journal, 2010, 162, 51-57.	6.6	50
82	Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: Effect of various simple pretreatment methods on sugar production. Bioresource Technology, 2012, 116, 536-539.	4.8	50
83	Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery. Bioresource Technology, 2017, 246, 20-27.	4.8	50
84	Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. Journal of Hazardous Materials, 2009, 166, 1556-1559.	6.5	49
85	Ultrasonic-assisted simultaneous saccharification and fermentation of pretreated oil palm fronds for sustainable bioethanol production. Fuel, 2014, 119, 285-291.	3.4	49
86	Pilot-scale semi-continuous cultivation of microalgae Chlorella vulgaris in bubble column photobioreactor (BC-PBR): Hydrodynamics and gas–liquid mass transfer study. Algal Research, 2016, 15, 65-76.	2.4	49
87	Optimization and kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via supercritical reaction. Energy Conversion and Management, 2015, 99, 242-251.	4.4	48
88	Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 2015, 184, 386-394.	4.8	48
89	Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydrate Polymers, 2013, 94, 561-566.	5.1	47
90	Pangium edule Reinw: A Promising Non-edible Oil Feedstock for Biodiesel Production. Arabian Journal for Science and Engineering, 2015, 40, 583-594.	1.1	47

#	Article	IF	CITATIONS
91	High biodiesel yield from wet microalgae paste via in-situ transesterification: Effect of reaction parameters towards the selectivity of fatty acid esters. Fuel, 2020, 272, 117718.	3.4	47
92	Comparative thermodynamic sustainability assessment of lignocellulosic pretreatment methods for bioethanol production via exergy analysis. Chemical Engineering Journal, 2013, 228, 162-171.	6.6	46
93	Prospects of non-catalytic supercritical methyl acetate process in biodiesel production. Fuel Processing Technology, 2011, 92, 1905-1909.	3.7	45
94	Influence of temperature on liquid products yield of oil palm shell via subcritical water liquefaction in the presence of alkali catalyst. Fuel Processing Technology, 2013, 110, 197-205.	3.7	45
95	Integration of reactive extraction with supercritical fluids for process intensification of biodiesel production: Prospects and recent advances. Progress in Energy and Combustion Science, 2014, 45, 54-78.	15.8	45
96	Adsorption isotherm models and properties of SO2 and NO removal by palm shell activated carbon supported with cerium (Ce/PSAC). Chemical Engineering Journal, 2010, 162, 194-200.	6.6	44
97	Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: A stress-inducing strategy for lipid accumulation and carbon dioxide fixation. Journal of CO2 Utilization, 2020, 41, 101226.	3.3	44
98	Biodiesel production by non-catalytic supercritical methyl acetate: Thermal stability study. Applied Energy, 2013, 101, 198-202.	5.1	43
99	An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment. Applied Thermal Engineering, 2014, 62, 90-104.	3.0	43
100	Key Factor in Rice Husk Ash/CaO Sorbent for High Flue Gas Desulfurization Activity. Environmental Science & Technology, 2006, 40, 6032-6037.	4.6	42
101	Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydrate Polymers, 2015, 124, 311-321.	5.1	42
102	Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology, 2012, 110, 662-669.	4.8	41
103	Parallel production of biodiesel and bioethanol in palmâ€oilâ€based biorefineries: life cycle assessment on the energy and greenhouse gases emissions. Biofuels, Bioproducts and Biorefining, 2011, 5, 132-150.	1.9	40
104	Sono-assisted organosolv/H2O2 pretreatment of oil palm (Elaeis guineensis Jacq.) fronds for recovery of fermentable sugars: Optimization and severity evaluation. Fuel, 2014, 115, 170-178.	3.4	37
105	Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization. Chemosphere, 2006, 62, 89-96.	4.2	34
106	Modified shrinking unreacted-core model for the reaction between sulfur dioxide and coal fly ash/CaO/CaSO4 sorbent. Chemical Engineering Journal, 2009, 146, 57-62.	6.6	34
107	Fuel Properties of <i>Croton megalocarpus</i> , <i>Calophyllum inophyllum</i> , and <i>Cocos nucifera</i> (coconut) Methyl Esters and their Performance in a Multicylinder Diesel Engine. Energy Technology, 2013, 1, 685-694.	1.8	34
108	Evaluation of various additives on the preparation of rice husk ash (RHA)/CaO-based sorbent for flue gas desulfurization (FGD) at low temperature. Journal of Hazardous Materials, 2009, 161, 570-574.	6.5	33

#	Article	IF	CITATIONS
109	Optimization of supercritical methanol reactive extraction by Response Surface Methodology and product characterization from Jatropha curcas L. seeds. Bioresource Technology, 2013, 142, 121-130.	4.8	32
110	The role of molybdenum in Co-Mo/MgO for large-scale production of high quality carbon nanotubes. Journal of Alloys and Compounds, 2010, 493, 539-543.	2.8	31
111	Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia. Energy, 2020, 210, 118491.	4.5	30
112	Removal of sulfur dioxide using absorbent synthesized from coal fly ash: Role of oxygen and nitrogen oxide in the desulfurization reaction. Chemical Engineering Science, 2005, 60, 3419-3423.	1.9	29
113	Analysis of SO ₂ Sorption Capacity of Rice Husk Ash (RHA)/CaO/NaOH Sorbents Using Response Surface Methodology (RSM): Untreated and Pretreated RHA. Environmental Science & Technology, 2008, 42, 1499-1504.	4.6	29
114	The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil. Chemical Papers, 2010, 64, .	1.0	29
115	Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment. Renewable and Sustainable Energy Reviews, 2010, 14, 2986-2995.	8.2	29
116	Oil Palm Ash/Ca(OH)2/CaSO4 Absorbent for Flue Gas Desulfurization. Chemical Engineering and Technology, 2005, 28, 939-945.	0.9	28
117	Will biofuel projects in Southeast Asia become white elephants?. Energy Policy, 2010, 38, 3847-3848.	4.2	28
118	Transesterification of palm oil and crude sea mango (Cerbera odollam) oil: The active role of simplified sulfated zirconia catalyst. Biomass and Bioenergy, 2012, 40, 96-104.	2.9	28
119	A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization. Energy Conversion and Management, 2014, 81, 192-200.	4.4	27
120	Comparison of different process strategies for bioethanol production from Eucheuma cottonii : An economic study. Bioresource Technology, 2016, 199, 336-346.	4.8	27
121	Scale-up and commercialization of algal cultivation and biofuels production. , 2019, , 475-506.		27
122	Biohydrogen Production From Algae. , 2019, , 219-245.		27
123	SO ₂ and NO Simultaneous Removal from Simulated Flue Gas over Cerium-Supported Palm Shell Activated at Lower Temperaturesâ^'Role of Cerium on NO Removal. Energy & Fuels, 2010, 24, 427-431.	2.5	26
124	Sustainability of Biofuel Production from Oil Palm Biomass. Green Energy and Technology, 2013, , .	0.4	25
125	Performance of an activated carbon made from waste palm shell in simultaneous adsorption of SO x and NO x of flue gas at low temperature. Science in China Series D: Earth Sciences, 2009, 52, 198-203.	0.9	22
126	Effects of solid pre-treatment towards optimizing supercritical methanol extraction and transesterification of Jatropha curcas L. seeds for the production of biodiesel. Separation and Purification Technology, 2011, 81, 363-370.	3.9	22

#	Article	IF	CITATIONS
127	Influence of impurities on biodiesel production from Jatropha curcas L. by supercritical methyl acetate process. Journal of Supercritical Fluids, 2013, 79, 73-75.	1.6	22
128	Same-vessel enzymatic saccharification and fermentation of organosolv/H2O2 pretreated oil palm (Elaeis guineensis Jacq.) fronds for bioethanol production: Optimization of process parameters. Energy Conversion and Management, 2014, 78, 421-430.	4.4	22
129	Investigation of impurity tolerance and thermal stability for biodiesel production from Jatropha curcas L. seeds using supercritical reactive extraction. Energy, 2014, 68, 71-79.	4.5	22
130	Sustainable and green pretreatment strategy of Eucheuma denticulatum residues for third-generation l-lactic acid production. Bioresource Technology, 2021, 330, 124930.	4.8	22
131	Feasibility of Palm Oil as the Feedstock for Biodiesel Production via Heterogeneous Transesterification. Chemical Engineering and Technology, 2008, 31, 993-999.	0.9	21
132	Biodiesel production via injection of superheated methanol technology at atmospheric pressure. Energy Conversion and Management, 2014, 87, 1231-1238.	4.4	20
133	Non-catalytic hydrolysis of sea mango (Cerbera odollam) oil and various non-edible oils to improve their solubility in alcohol for biodiesel production. Chemical Engineering Journal, 2014, 237, 1-7.	6.6	20
134	The effects of limestone type on the sulphur capture of slaked lime. Fuel, 2007, 86, 2660-2666.	3.4	19
135	Development of kinetic model for the reaction between SO2/NO and coal fly ash/CaO/CaSO4 sorbent. Fuel, 2008, 87, 2223-2228.	3.4	19
136	BIODIESEL PRODUCTION FROM PALM OIL VIA HETEROGENEOUS TRANSESTERIFICATION: OPTIMIZATION STUDY. Chemical Engineering Communications, 2010, 197, 1597-1611.	1.5	19
137	Second-generation biofuel (SCB) in Southeast Asia via lignocellulosic biorefinery: Penny-foolish but pound-wise. Renewable and Sustainable Energy Reviews, 2011, 15, 2714-2718.	8.2	19
138	Simultaneous SO2 and NO removal using sorbents derived from rice husks: An optimisation study. Fuel, 2011, 90, 1811-1817.	3.4	18
139	Sorption of SO2 and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO2 sorbent: Evaluation of deactivation kinetic parameters. Journal of Hazardous Materials, 2011, 185, 1609-1613.	6.5	18
140	Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models. Journal of Hazardous Materials, 2010, 178, 249-257.	6.5	17
141	Supercritical Alcohol Technology in Biodiesel Production: A Comparative Study between Methanol and Ethanol. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 33, 156-163.	1.2	17
142	Dry SO2 Removal Process Using Calcium/Siliceous-Based Sorbents: Deactivation Kinetics Based on Breakthrough Curves. Chemical Engineering and Technology, 2007, 30, 663-666.	0.9	16
143	Optimizing ethanolic hot compressed water (EHCW) cooking as a pretreatment to glucose recovery for the production of fuel ethanol from oil palm frond (OPF). Fuel Processing Technology, 2010, 91, 1146-1151.	3.7	16
144	Kinetic studies of sea mango (Cerbera odollam) oil for biodiesel production via injection of superheated methanol vapour technology. Energy Conversion and Management, 2015, 105, 1213-1222.	4.4	16

#	Article	IF	CITATIONS
145	Bioethanol Production from Microalgae. , 2015, , 197-208.		15
146	Macroalgae-derived regenerated cellulose in the stabilization of oil-in-water Pickering emulsions. Carbohydrate Polymers, 2020, 249, 116875.	5.1	15
147	Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents. Fuel, 2020, 260, 116354.	3.4	14
148	Sulphur dioxide removal using South African limestone/siliceous materials. Fuel, 2010, 89, 2549-2555.	3.4	13
149	Influence of environmental stress on microalgae growth and lipid profile: a systematic review. Phytochemistry Reviews, 2023, 22, 879-901.	3.1	13
150	Preparation and Characterization of CaO/CaSO4/Coal Fly Ash Sorbent for Sulfur Dioxide (SO2) Removal: Part I. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1241-1249.	1.2	12
151	Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study. Journal of Hazardous Materials, 2010, 183, 738-745.	6.5	10
152	Production of Biodiesel Using Palm Oil. , 2011, , 353-374.		10
153	Effect of operating conditions towards simultaneous removal of SO2 and NO using copper modified rice husk ash: Role as sorbent and catalyst. Journal of Environmental Chemical Engineering, 2013, 1, 755-761.	3.3	8
154	Scale-Up and Commercialization of Algal Cultivation and Biofuel Production. , 2014, , 261-286.		8
155	Potential of macroalgae-based biorefinery for lactic acid production from exergy aspect. Biomass Conversion and Biorefinery, 2023, 13, 2623-2653.	2.9	8
156	Non-Catalytic and Catalytic Transesterification: A Reaction Kinetics Comparison Study. International Journal of Green Energy, 2015, 12, 551-558.	2.1	7
157	The potential of attached growth of microalgae on solid surface for biomass and lipid production. IOP Conference Series: Materials Science and Engineering, 2020, 965, 012001.	0.3	7
158	Flue Gas Desulfurization Using Sorbent Synthesized from Lime (CaO) and Oil Palm Ash (OPA) Derived from Empty Fruit Bunches (EFB): Statistical Design Approach. Environmental Engineering Science, 2007, 24, 769-777.	0.8	6
159	Rice Husk Ash/Calcium Oxide/Ceria Sorbent for Simultaneous Removal of Sulfur Dioxide and Nitric Oxide from Flue Gas at Low Temperature. Environmental Engineering Science, 2009, 26, 1257-1265.	0.8	6
160	Esterification of hydrolyzed sea mango (Cerbera odollam) oil using various cationic ion exchange resins. Energy Science and Engineering, 2014, 2, 31-38.	1.9	6
161	Production of Biodiesel Using Palm Oil. , 2019, , 539-574.		6
162	Oil Palm Biomass as Feedstock for Biofuel Production. Green Energy and Technology, 2013, , 77-106.	0.4	6

#	Article	IF	CITATIONS
163	Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues. Energy, 2022, 242, 122968.	4.5	6
164	Optimization of Process Parameters for the Preparation of CaO/CaSO4/Coal Fly Ash Sorbent for Sulfur Dioxide (SO2) Removal: Part II. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2006, 28, 1251-1258.	1.2	5
165	Biohydrogen Production from Algae. , 2013, , 161-184.		5
166	Environmental Sustainability Assessment of Biofuel Production from Oil Palm Biomass. Green Energy and Technology, 2013, , 149-187.	0.4	5
167	Modeling and Simulation of Flue Gas Desulfurization Using CaO/CaSO4/Coal Fly Ash Sorbent. Journal of Chemical Engineering of Japan, 2005, 38, 391-396.	0.3	3
168	Application of Heteropolyacid-Based Heterogeneous Catalysts for Conversion of Oleochemicals into Renewable Fuels and other Value-Added Products. Materials Science Forum, 0, 757, 1-24.	0.3	3
169	Response to "Comment on a glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology― Bioresource Technology, 2011, 102, 3990-3991.	4.8	2
170	Utilisation of Palm Oil Wastes for Biofuel and Other Value-Added Bio-Products: A Holistic Approach to Sustainable Waste Management for the Palm Oil Industry. , 2013, , 53-87.		2
171	Feasibility of Continuous Fatty Acid Methyl Esters (FAME) Production from Hydrolyzed Sea Mango (<i>Cerbera odollam</i>) Oil at Room Temperature Using Cationic Ion Exchange Resin. IOP Conference Series: Materials Science and Engineering, 0, 495, 012050.	0.3	2
172	Neural Network Modeling of the Kinetics of SO2Removal by Fly Ash-Based Sorbent. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2006, 41, 195-210.	0.9	1
173	Biodiesel Production in Supercritical Fluids. , 2019, , 523-538.		1
174	Decolourization of chicken compost derived liquid fertilizer via synergic ultraviolet (UV) irradiation and ozonation for enhanced microalgae cultivation. E3S Web of Conferences, 2021, 287, 04013.	0.2	1
175	Complex chemical kinetic mechanism reduction for simultaneous catalytic oxidation and desulphurization of hydrogen sulphide. Fuel, 2021, 286, 119406.	3.4	1
176	Production of Palm Biofuels Toward Sustainable Development. Green Energy and Technology, 2013, , 107-146.	0.4	1
177	Optimized Preparation of Moringa Oleifera Methyl Esters Using Sulfated Tin Oxide as Heterogenous Catalyst. , 2010, , .		0
178	Biodiesel Production in Supercritical Fluids. , 2011, , 339-352.		0
179	Economic Sustainability Assessment of Biofuels Production from Oil Palm Biomass. Green Energy and Technology, 2013, , 189-215.	0.4	0