Junhyong Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093258/publications.pdf

Version: 2024-02-01

75 papers 6,900 citations

94433 37 h-index 71 g-index

84 all docs

84 docs citations

times ranked

84

11838 citing authors

#	Article	IF	Citations
1	Single-cell analysis identifies the interaction of altered renal tubules with basophils orchestrating kidney fibrosis. Nature Immunology, 2022, 23, 947-959.	14.5	37
2	The Nuclear Receptor ESRRA Protects from Kidney Disease by Coupling Metabolism and Differentiation. Cell Metabolism, 2021, 33, 379-394.e8.	16.2	93
3	Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets. Nature Communications, 2021, 12, 2277.	12.8	122
4	Multi-omics integration in the age of million single-cell data. Nature Reviews Nephrology, 2021, 17, 710-724.	9.6	97
5	Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell, 2021, 184, 4904-4918.e11.	28.9	40
6	A Novel FBXO45-Gef-H1 Axis Controls Oncogenic Signaling in B-Cell Lymphoma. Blood, 2021, 138, 711-711.	1.4	1
7	A subspace clustering method for satisfying stoimetric constraints in scRNA -seq. , 2021, , .		0
8	Multi-Dimensional Mapping of Brain-Derived Extracellular Vesicle MicroRNA Biomarker for Traumatic Brain Injury Diagnostics. Journal of Neurotrauma, 2020, 37, 2424-2434.	3.4	50
9	Photoactivated Selective Release of Droplets from Microwell Arrays. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3936-3944.	8.0	7
10	Static array of droplets and on-demand recovery for biological assays. Biomicrofluidics, 2020, 14, 051302.	2.4	6
11	Insertion variants missing in the human reference genome are widespread among human populations. BMC Biology, 2020, 18, 167.	3.8	7
12	Lamin B2 Levels Regulate Polyploidization of Cardiomyocyte Nuclei and Myocardial Regeneration. Developmental Cell, 2020, 53, 42-59.e11.	7.0	57
13	IgSF11 regulates osteoclast differentiation through association with the scaffold protein PSD-95. Bone Research, 2020, 8, 5.	11.4	16
14	Understanding the kidney one cell at a time. Kidney International, 2019, 96, 862-870.	5.2	45
15	Control of cytokinesis by \hat{l}^2 -adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Science Translational Medicine, 2019, 11 , .	12.4	73
16	Single-Cell Profiling Reveals Sex, Lineage, and Regional Diversity in the Mouse Kidney. Developmental Cell, 2019, 51, 399-413.e7.	7.0	266
17	A lineage-resolved molecular atlas of <i>C. elegans</i> embryogenesis at single-cell resolution. Science, 2019, 365, .	12.6	354
18	Comprehensive catalog of dendritically localized mRNA isoforms from sub-cellular sequencing of single mouse neurons. BMC Biology, 2019, 17, 5.	3.8	50

#	Article	IF	CITATIONS
19	Avian Primordial Germ Cells Contribute to and Interact With the Extracellular Matrix During Early Migration. Frontiers in Cell and Developmental Biology, 2019, 7, 35.	3.7	19
20	Genomic evidence for shared common ancestry of East African hunting-gathering populations and insights into local adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4166-4175.	7.1	40
21	Moldable Perfluoropolyether–Polyethylene Glycol Networks with Tunable Wettability and Solvent Resistance for Rapid Prototyping of Droplet Microfluidics. Chemistry of Materials, 2018, 30, 2583-2588.	6.7	13
22	Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH. Cell Systems, 2018, 6, 171-179.e5.	6.2	111
23	PIVOT: platform for interactive analysis and visualization of transcriptomics data. BMC Bioinformatics, 2018, 19, 6.	2.6	55
24	miRNA Profiling of Magnetic Nanopore–Isolated Extracellular Vesicles for the Diagnosis of Pancreatic Cancer. Cancer Research, 2018, 78, 3688-3697.	0.9	63
25	Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature, 2018, 560, 382-386.	27.8	1,836
26	Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genetics, 2018, 14, e1007164.	3.5	18
27	Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Reports, 2017, 18, 791-803.	6.4	60
28	CYCLOPS reveals human transcriptional rhythms in health and disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5312-5317.	7.1	184
29	The purinergic receptor P2X5 regulates inflammasome activity and hyper-multinucleation of murine osteoclasts. Scientific Reports, 2017, 7, 196.	3.3	41
30	Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data. Nucleic Acids Research, 2017, 45, 10978-10988.	14.5	73
31	Single cell transcriptomics of noncoding <scp>RNAs</scp> and their cellâ€specificity. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1433.	6.4	23
32	Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing. Cell Reports, 2017, 21, 2706-2713.	6.4	48
33	Complete fold annotation of the human proteome using a novel structural feature space. Scientific Reports, 2017, 7, 46321.	3.3	4
34	Challenges and emerging directions in single-cell analysis. Genome Biology, 2017, 18, 84.	8.8	258
35	Assessing characteristics of RNA amplification methods for single cell RNA sequencing. BMC Genomics, 2016, 17, 966.	2.8	34
36	Variation is function: Are single cell differences functionally important?. BioEssays, 2016, 38, 172-180.	2.5	66

#	Article	lF	CITATIONS
37	Singleâ€cell transcriptomics and functional target validation of brown adipocytes show their complex roles in metabolic homeostasis. FASEB Journal, 2016, 30, 81-92.	0.5	39
38	Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biology, 2015, 16, 127.	9.6	228
39	Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biology, 2015, 16, 122.	9.6	95
40	Can one hear the shape of a population history?. Theoretical Population Biology, 2015, 100, 26-38.	1.1	26
41	Cellular Deconstruction: Finding Meaning in Individual Cell Variation. Trends in Cell Biology, 2015, 25, 569-578.	7.9	28
42	Divergence of RNA localization between rat and mouse neurons reveals the potential for rapid brain evolution. BMC Genomics, 2014, 15, 883.	2.8	22
43	Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biology, 2014, 12, e1001840.	5. 6	109
44	The promise of single-cell sequencing. Nature Methods, 2014, 11, 25-27.	19.0	262
45	Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nature Methods, 2014, 11, 190-196.	19.0	235
46	Serotonergic neuron regulation informed by in vivo singleâ€eell transcriptomics. FASEB Journal, 2014, 28, 771-780.	0.5	55
47	NoFold: RNA structure clustering without folding or alignment. Rna, 2014, 20, 1671-1683.	3.5	16
48	IVT-seq reveals extreme bias in RNA sequencing. Genome Biology, 2014, 15, R86.	9.6	134
49	Pervasive Antisense Transcription Is Evolutionarily Conserved in Budding Yeast. Molecular Biology and Evolution, 2013, 30, 409-421.	8.9	22
50	Subcellular RNA Sequencing Reveals Broad Presence of Cytoplasmic Intron-Sequence Retaining Transcripts in Mouse and Rat Neurons. PLoS ONE, 2013, 8, e76194.	2.5	35
51	Quantitative biology of single neurons. Journal of the Royal Society Interface, 2012, 9, 3165-3183.	3.4	18
52	Cytoplasmic Intron Sequence-Retaining Transcripts Can Be Dendritically Targeted via ID Element Retrotransposons. Neuron, 2011, 69, 877-884.	8.1	148
53	Transcriptome transfer provides a model for understanding the phenotype of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11918-11923.	7.1	31
54	RNA: state memory and mediator of cellular phenotype. Trends in Cell Biology, 2010, 20, 311-318.	7.9	62

#	Article	IF	CITATIONS
55	Dissecting the molecular mechanism of drosophila odorant receptors through activity modeling and comparative analysis. Proteins: Structure, Function and Bioinformatics, 2010, 78, 381-399.	2.6	24
56	Transcriptome transfer produces a predictable cellular phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7624-7629.	7.1	86
57	Mutational robustness and geometrical form in protein structures. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 216-226.	1.3	6
58	Translation of Sensory Input into Behavioral Output via an Olfactory System. Neuron, 2008, 59, 110-124.	8.1	258
59	Self Containment, a Property of Modular RNA Structures, Distinguishes microRNAs. PLoS Computational Biology, 2008, 4, e1000150.	3.2	17
60	Penalized Likelihood Phylogenetic Inference: Bridging the Parsimony-Likelihood Gap. Systematic Biology, 2008, 57, 665-674.	5.6	55
61	Molecular Evolution of Drosophila Odorant Receptor Genes. Molecular Biology and Evolution, 2007, 24, 1198-1207.	8.9	125
62	Transcriptional Target Prediction Using Qualitative Reasoning. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
63	The Cobweb of Life Revealed by Genome-Scale Estimates of Horizontal Gene Transfer. PLoS Biology, 2005, 3, e316.	5.6	113
64	Guest Editorial: WABI Special Section Part II. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2, 1-2.	3.0	3
65	Guest Editorial: WABI Special Section Part 1. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2004, 1, 137-138.	3.0	1
66	Estimating genomic coexpression networks using first-order conditional independence. Genome Biology, 2004, 5, R100.	9.6	115
67	Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics, 2003, 19, 842-850.	4.1	96
68	Gene discovery by e-genetics: Drosophila odor and taste receptors. Journal of Cell Science, 2002, 115, 1107-12.	2.0	18
69	Descartes' fly: the geometry of genomic annotation. Functional and Integrative Genomics, 2001, 1, 241-249.	3.5	2
70	Macro-evolution of thehairy enhancer inDrosophila species. The Journal of Experimental Zoology, 2001, 291, 175-185.	1.4	15
71	Phylogeny of Holothuroidea (Echinodermata) inferred from morphology. Zoological Journal of the Linnean Society, 2001, 133, 63-81.	2.3	57
72	AFTER THE MOLECULAR EVOLUTION REVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 2620-2622.	2.3	2

#	Article	IF	CITATIONS
73	Constraint structure analysis of gene expression. Functional and Integrative Genomics, 2000, 1, 174-185.	3 . 5	8
74	A TREE OBSCURED BY VINES: HORIZONTAL GENE TRANSFER AND THE MEDIAN TREE METHOD OF ESTIMATING SPECIES PHYLOGENY. , 2000, , 571-82.		5
75	Bi-penta-bi-decaradial symmetry: A review of evolutionary and developmental trends in holothuroidea (echinodermata)., 1999, 285, 93-103.		21