
Eun Ji Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093134/publications.pdf Version: 2024-02-01

FUN LI CHUNC

#	Article	IF	CITATIONS
1	Strategies to deliver RNA by nanoparticles for therapeutic potential. Molecular Aspects of Medicine, 2022, 83, 100991.	2.7	5
2	Clinical progress of nanomedicine-based RNA therapies. Bioactive Materials, 2022, 12, 203-213.	8.6	23
3	Immunization using ApoB-100 peptide–linked nanoparticles reduces atherosclerosis. JCI Insight, 2022, 7,	2.3	11
4	CCR2-targeted micelles for anti-cancer peptide delivery and immune stimulation. Journal of Controlled Release, 2021, 329, 614-623.	4.8	22
5	Oral delivery of metformin by chitosan nanoparticles for polycystic kidney disease. Journal of Controlled Release, 2021, 329, 1198-1209.	4.8	49
6	Overcoming physiological barriers by nanoparticles for intravenous drug delivery to the lymph nodes. Experimental Biology and Medicine, 2021, 246, 2358-2371.	1.1	20
7	Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions. Journal of Controlled Release, 2021, 334, 127-137.	4.8	63
8	miR-145 micelles mitigate atherosclerosis by modulating vascular smooth muscle cell phenotype. Biomaterials, 2021, 273, 120810.	5.7	53
9	Exosomes in Atherosclerosis, a Double-Edged Sword: Their Role in Disease Pathogenesis and Their Potential as Novel Therapeutics. AAPS Journal, 2021, 23, 95.	2.2	17
10	Targeted polyelectrolyte complex micelles treat vascular complications inÂvivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
11	Hydrophobically assembled nanoparticles. , 2020, , 325-347.		1
12	Targeting and therapeutic peptide-based strategies for polycystic kidney disease. Advanced Drug Delivery Reviews, 2020, 161-162, 176-189.	6.6	8
13	The effect of size, charge, and peptide ligand length on kidney targeting by small, organic nanoparticles. Bioengineering and Translational Medicine, 2020, 5, e10173.	3.9	37
14	Transdermal Delivery of Kidney-Targeting Nanoparticles Using Dissolvable Microneedles. Cellular and Molecular Bioengineering, 2020, 13, 475-486.	1.0	15
15	Collagenaseâ€Cleavable Peptide Amphiphile Micelles as a Novel Theranostic Strategy in Atherosclerosis. Advanced Therapeutics, 2020, 3, 1900196.	1.6	18
16	Peptide-based targeting of immunosuppressive cells in cancer. Bioactive Materials, 2020, 5, 92-101.	8.6	41
17	Nanomedicine for Cystic Fibrosis. SLAS Technology, 2019, 24, 169-180.	1.0	28
18	Nanoparticle Strategies for Biomedical Applications: Reviews from the University of Southern California Viterbi School of Engineering. SLAS Technology, 2019, 24, 135-136.	1.0	2

Еим Јі Снимс

#	Article	IF	CITATIONS
19	Hydroxyapatite-binding micelles for the detection of vascular calcification in atherosclerosis. Journal of Materials Chemistry B, 2019, 7, 6449-6457.	2.9	23
20	Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. SLAS Technology, 2019, 24, 151-160.	1.0	22
21	siRNA-Conjugated Nanoparticles to Treat Ovarian Cancer. SLAS Technology, 2019, 24, 137-150.	1.0	24
22	Calcium-Binding Nanoparticles for Vascular Disease. Regenerative Engineering and Translational Medicine, 2019, 5, 74-85.	1.6	6
23	Calcium-binding nanoparticles for vascular disease. Regenerative Engineering and Translational Medicine, 2019, 5, 74-85.	1.6	4
24	Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration. Methods in Molecular Biology, 2018, 1758, 1-10.	0.4	1
25	Theranostic Nanoparticles for Tracking and Monitoring Disease State. SLAS Technology, 2018, 23, 281-293.	1.0	79
26	Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis. Journal of Nanobiotechnology, 2018, 16, 92.	4.2	47
27	Shape Effects of Peptide Amphiphile Micelles for Targeting Monocytes. Molecules, 2018, 23, 2786.	1.7	13
28	"First do no harm― kidney drug targeting to avoid toxicity in ADPKD. American Journal of Physiology - Renal Physiology, 2018, 315, F535-F536.	1.3	6
29	Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Research, 2018, 11, 5584-5595.	5.8	52
30	A biodegradable tri-component graft for anterior cruciate ligament reconstruction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 704-712.	1.3	29
31	Targeting cell adhesion molecules with nanoparticles using <i>inÂvivo</i> and flow-based <i>inÂvitro</i> models of atherosclerosis. Experimental Biology and Medicine, 2017, 242, 799-812.	1.1	79
32	Peptide and antibody ligands for renal targeting: nanomedicine strategies for kidney disease. Biomaterials Science, 2017, 5, 1450-1459.	2.6	69
33	Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles. ACS Biomaterials Science and Engineering, 2017, 3, 3273-3282.	2.6	24
34	Self-assembling peptide-based building blocks in medical applications. Advanced Drug Delivery Reviews, 2017, 110-111, 65-79.	6.6	169
35	Bulk and nanoscale polypeptide based polyelectrolyte complexes. Advances in Colloid and Interface Science, 2017, 239, 187-198.	7.0	44
36	Synthesis of Monocyte-targeting Peptide Amphiphile Micelles for Imaging of Atherosclerosis. Journal of Visualized Experiments, 2017, , .	0.2	8

Еим Јі Снимс

#	Article	IF	CITATIONS
37	Targeting and therapeutic peptides in nanomedicine for atherosclerosis. Experimental Biology and Medicine, 2016, 241, 891-898.	1.1	43
38	Gadolinium-Functionalized Peptide Amphiphile Micelles for Multimodal Imaging of Atherosclerotic Lesions. ACS Omega, 2016, 1, 996-1003.	1.6	49
39	Cardiovascular Disease: Monocyteâ€Targeting Supramolecular Micellar Assemblies: A Molecular Diagnostic Tool for Atherosclerosis (Adv. Healthcare Mater. 3/2015). Advanced Healthcare Materials, 2015, 4, 324-324.	3.9	0
40	Recent Advances in Targeted, Selfâ€Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis. Advanced Healthcare Materials, 2015, 4, 2408-2422.	3.9	40
41	Monocyteâ€Targeting Supramolecular Micellar Assemblies: A Molecular Diagnostic Tool for Atherosclerosis. Advanced Healthcare Materials, 2015, 4, 367-376.	3.9	46
42	In vivo biodistribution and clearance of peptide amphiphile micelles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 479-487.	1.7	56
43	Biocompatibility and Characterization of a Peptide Amphiphile Hydrogel for Applications in Peripheral Nerve Regeneration. Tissue Engineering - Part A, 2015, 21, 1333-1342.	1.6	47
44	Abstract 16526: Nanoparticle-mediated Targeting of Endothelial mir92a-PPAP2B Signaling Axis in Atherosclerosis. Circulation, 2015, 132, .	1.6	0
45	Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. Journal of Materials Chemistry B, 2014, 2, 8142-8153.	2.9	89
46	Active targeting of early and mid-stage atherosclerotic plaques using self-assembled peptide amphiphile micelles. Biomaterials, 2014, 35, 8678-8686.	5.7	61
47	Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma. Biomaterials, 2014, 35, 1249-1256.	5.7	144
48	Osteogenic Potential of BMP-2-Releasing Self-Assembled Membranes. Tissue Engineering - Part A, 2013, 19, 2664-2673.	1.6	22
49	In situ forming collagen–hyaluronic acid membrane structures: Mechanism of self-assembly and applications in regenerative medicine. Acta Biomaterialia, 2013, 9, 5153-5161.	4.1	35
50	Low-Pressure Foaming: A Novel Method for the Fabrication of Porous Scaffolds for Tissue Engineering. Tissue Engineering - Part C: Methods, 2012, 18, 113-121.	1.1	28
51	The role of hydroxyapatite in citric acid-based nanocomposites: Surface characteristics, degradation, and osteogenicity in vitro. Acta Biomaterialia, 2011, 7, 4057-4063.	4.1	39
52	Long-term in vivo response to citric acid-based nanocomposites for orthopaedic tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 2131-2138.	1.7	23
53	Early tissue response to citric acid–based micro―and nanocomposites. Journal of Biomedical Materials Research - Part A, 2011, 96A, 29-37.	2.1	33
54	Therapeutic Response of miR-145 Micelles on Patient-Derived Vascular Smooth Muscle Cells. Frontiers in Digital Health, 0, 4, .	1.5	6