
Weiqiang Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient solar cells sensitized by a promising new type of porphyrin: dye-aggregation suppressed by double strapping. Chemical Science, 2019, 10, 2186-2192.	3.7	116
2	Synergistic electrocatalysis of polysulfides by a nanostructured VS ₄ -carbon nanofiber functional separator for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 16812-16820.	5.2	105
3	Activating p-Blocking Centers in Perovskite for Efficient Water Splitting. CheM, 2018, 4, 2902-2916.	5.8	99
4	A Highly Conductive COF@CNT Electrocatalyst Boosting Polysulfide Conversion for Li–S Chemistry. ACS Energy Letters, 2021, 6, 3053-3062.	8.8	97
5	Design of Highly Efficient Pt-SnO ₂ Hydrogenation Nanocatalysts using Pt@Sn Core–Shell Nanoparticles. ACS Catalysis, 2017, 7, 1583-1591.	5.5	86
6	Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2020, 392, 123694.	6.6	78
7	Systematic optimization of the substituents on the phenothiazine donor of doubly strapped porphyrin sensitizers: an efficiency over 11% unassisted by any cosensitizer or coadsorbent. Journal of Materials Chemistry A, 2019, 7, 20854-20860.	5.2	68
8	Efficient polysulfide barrier of a graphene aerogel–carbon nanofibers–Ni network for high-energy-density lithium–sulfur batteries with ultrahigh sulfur content. Journal of Materials Chemistry A, 2018, 6, 20926-20938.	5.2	63
9	Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 18100-18108.	5.2	57
10	Molecular Glue Strategy: Large-Scale Conversion of Clustering-Induced Emission Luminogen to Carbon Dots. ACS Applied Materials & amp; Interfaces, 2019, 11, 19301-19307.	4.0	44
11	A novel nitroethylene-based porphyrin as a NIR fluorescence turn-on probe for biothiols based on the Michael addition reaction. Dyes and Pigments, 2018, 148, 437-443.	2.0	43
12	Anatase TiO ₂ Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 6428-6435.	2.4	40
13	Trimming the π bridge of microporous frameworks for bidentate anchoring of polysulfides to stabilize lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 19001-19010.	5.2	38
14	Porphyrin sensitizers containing an auxiliary benzotriazole acceptor for dye-sensitized solar cells: Effects of steric hindrance and cosensitization. Dyes and Pigments, 2018, 155, 323-331.	2.0	35
15	First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile. Journal of Power Sources, 2018, 384, 249-255.	4.0	29
16	Enhanced Catalytic Performance for Hydrogenation of Substituted Nitroaromatics over Ir-Based Bimetallic Nanocatalysts. ACS Applied Materials & Interfaces, 2019, 11, 6958-6969.	4.0	29
17	Efficient solar cells based on cosensitizing porphyrin dyes containing a wrapped donor, a wrapped ï€-framework and a substituted benzothiadiazole unit. Science China Chemistry, 2019, 62, 994-1000.	4.2	27
18	Electrochemical reduction of nitrate in a catalytic carbon membrane nano-reactor. Water Research, 2022, 208, 117862.	5.3	23

WEIQIANG TANG

#	Article	IF	CITATIONS
19	Design of Cu-based intermetallic nanocrystals for enhancing hydrogenation selectivity. Chemical Engineering Science, 2019, 196, 402-413.	1.9	22
20	Development of Reaction Density Functional Theory and Its Application to Glycine Tautomerization Reaction in Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 20745-20754.	1,5	21
21	Dynamic Adsorption of Ions into Like-Charged Nanospace: A Dynamic Density Functional Theory Study. Langmuir, 2019, 35, 4254-4262.	1.6	19
22	In-situ fabrication of carbon-metal fabrics as freestanding electrodes for high-performance flexible energy storage devices. Energy Storage Materials, 2020, 30, 329-336.	9.5	19
23	Combination of pyrrole and pyridine for constructing selective and sensitive Zn2+ probes. Dyes and Pigments, 2017, 140, 320-327.	2.0	17
24	Pd-SnO2/Al2O3 heteroaggregate nanocatalysts for selective hydrogenations of p-nitroacetophenone and p-nitrobenzaldehyde. Applied Catalysis A: General, 2018, 549, 273-279.	2.2	17
25	Confinement Effect on Molecular Conformation of Alkanes in Water-Filled Cavitands: A Combined Quantum/Classical Density Functional Theory Study. Langmuir, 2018, 34, 13491-13496.	1.6	17
26	A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale. Chemical Engineering Science, 2021, 236, 116513.	1.9	17
27	Denitration by oxidation-absorption with polypropylene hollow fiber membrane contactor. Applied Energy, 2017, 206, 858-868.	5.1	15
28	Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: A reaction density functional theory study. Chemical Engineering Science, 2020, 213, 115380.	1.9	15
29	A reaction density functional theory study of the solvent effect in prototype S _N 2 reactions in aqueous solution. Physical Chemistry Chemical Physics, 2019, 21, 24876-24883.	1.3	14
30	Solvent Effects on the Symmetric and Asymmetric S _N 2 Reactions in the Acetonitrile Solution: A Reaction Density Functional Theory Study. Journal of Physical Chemistry B, 2020, 124, 3114-3122.	1.2	14
31	Selective and sensitive fluorescence "turn-on―Zn2+ probes based on combination of anthracene, diphenylamine and dipyrrin. Science China Chemistry, 2017, 60, 1212-1218.	4.2	13
32	Optimization of porphyrin dyes with a bulky triphenylamine donor for developing efficient dye-sensitized solar cells. Dyes and Pigments, 2021, 187, 109075.	2.0	10
33	Quantifying ion desolvation effects on capacitances of nanoporous electrodes with liquid electrolytes. Chemical Engineering Science, 2021, 240, 116662.	1.9	8
34	Microfluidic-based in-situ determination for reaction kinetics of hydrogen peroxide decomposition. Chemical Engineering Journal, 2021, 424, 130486.	6.6	8
35	Engineering the Interfacial Microenvironment via Surface Hydroxylation to Realize the Global Optimization of Electrochemical CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 32157-32165.	4.0	8
36	Infixing NiS 2 nanospheres into a threeâ€dimensional rGO/CNTsâ€Li carbon composite as superior electrocatalyst for highâ€performance Liâ^'S batteries. ChemNanoMat, 2020, 6, 976-983.	1.5	7

WEIQIANG TANG

#	Article	IF	CITATIONS
37	Aluminum intercalation and transport in TiO2(B) from first principles. Journal of Energy Storage, 2019, 24, 100800.	3.9	4
38	A reaction density functional theory study of solvent effects on keto-enol tautomerism and isomerization in pyruvic acid. Chinese Journal of Chemical Engineering, 2021, 31, 10-16.	1.7	4
39	A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution. Green Energy and Environment, 2020, , .	4.7	4
40	Transfer free energy of micro-hydrated ion clusters from water into acetonitrile solvent. Chemical Engineering Science, 2021, 237, 116561.	1.9	3
41	Macroporous Multichannel Carbon Nanofibers Embedded with Co/Feâ€N Electrocatalyst as the Sulfur Host for Boosting Polysulfides Conversion in Lithiumâ€Sulfur Batteries. ChemistrySelect, 2021, 6, 5932-5940.	0.7	3