Xing Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6093003/publications.pdf Version: 2024-02-01

XINC CAO

#	Article	IF	CITATIONS
1	Non-Markovian stochastic Schrödinger equation: Matrix-product-state approach to the hierarchy of pure states. Physical Review A, 2022, 105, .	2.5	9
2	Using Chlorotrifluoroethane for Trifluoroethylation of (Hetero)aryl Bromides and Chlorides via Nickel Catalysis. Organic Letters, 2021, 23, 1400-1405.	4.6	16
3	Highly γâ€5elective Arylation and Carbonylative Arylation of 3â€Bromoâ€3,3â€difluoropropene via Nickel Catalysis. Angewandte Chemie, 2021, 133, 12494-12499.	2.0	1
4	Highly γâ€Selective Arylation and Carbonylative Arylation of 3â€Bromoâ€3,3â€difluoropropene via Nickel Catalysis. Angewandte Chemie - International Edition, 2021, 60, 12386-12391.	13.8	47
5	Simulating energy transfer dynamics in the Fenna–Matthews–Olson complex via the modified generalized quantum master equation. Journal of Chemical Physics, 2021, 154, 204109.	3.0	19
6	Copper-Catalyzed Enantioselective Trifluoromethylthiolation of Secondary Propargyl Sulfonates. CCS Chemistry, 2021, 3, 1463-1471.	7.8	17
7	Charge transfer rate constants for the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran: The spin-boson model vs the linearized semiclassical approximation. Journal of Chemical Physics, 2020, 153, 044105.	3.0	25
8	Simulating Absorption Spectra of Multiexcitonic Systems via Quasiclassical Mapping Hamiltonian Methods. Journal of Chemical Theory and Computation, 2020, 16, 6465-6480.	5.3	25
9	A Nonperturbative Methodology for Simulating Multidimensional Spectra of Multiexcitonic Molecular Systems via Quasiclassical Mapping Hamiltonian Methods. Journal of Chemical Theory and Computation, 2020, 16, 6491-6502.	5.3	26
10	Electronic Dynamics through Conical Intersections via Quasiclassical Mapping Hamiltonian Methods. Journal of Chemical Theory and Computation, 2020, 16, 4479-4488.	5.3	25
11	Benchmarking Quasiclassical Mapping Hamiltonian Methods for Simulating Electronically Nonadiabatic Molecular Dynamics. Journal of Chemical Theory and Computation, 2020, 16, 2883-2895.	5.3	44
12	Improving the Accuracy of Quasiclassical Mapping Hamiltonian Methods by Treating the Window Function Width as an Adjustable Parameter. Journal of Physical Chemistry A, 2020, 124, 11006-11016.	2.5	12
13	Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics. Journal of Chemical Physics, 2019, 151, 074103.	3.0	30
14	Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques. Physical Review Letters, 2019, 123, 163202.	7.8	13
15	Nickel-Catalyzed Carbonylation of Difluoroalkyl Bromides with Arylboronic Acids. Organic Letters, 2019, 21, 1031-1036.	4.6	65
16	Charge and energy transfer in large molecular assemblies: Quantum state diffusion with an adaptive basis. Journal of Chemical Physics, 2019, 150, 234115.	3.0	8
17	Promoting Intersystem Crossing of a Fluorescent Molecule via Single Functional Group Modification. Journal of Physical Chemistry Letters, 2019, 10, 1388-1393.	4.6	15
18	Copperâ€Catalyzed Highly Stereoselective Trifluoromethylation and Difluoroalkylation of Secondary Propargyl Sulfonates. Angewandte Chemie, 2018, 130, 3241-3245.	2.0	10

Xing Gao

#	Article	IF	CITATIONS
19	Copper atalyzed Highly Stereoselective Trifluoromethylation and Difluoroalkylation of Secondary Propargyl Sulfonates. Angewandte Chemie - International Edition, 2018, 57, 3187-3191.	13.8	55
20	Near-Field Spectroscopy of Nanoscale Molecular Aggregates. Journal of Physical Chemistry Letters, 2018, 9, 6003-6010.	4.6	13
21	Nickelâ€Catalyzed Difluoroalkylation of (Hetero)aryl Bromides with Unactivated 1â€Bromoâ€1,1â€difluoroalkanes. Chinese Journal of Chemistry, 2018, 36, 1059-1062.	4.9	13
22	Non-Hermitian surface hopping. Physical Review E, 2017, 95, 013308.	2.1	31
23	Evaluation of Spin-Orbit Couplings with Linear-Response Time-Dependent Density Functional Methods. Journal of Chemical Theory and Computation, 2017, 13, 515-524.	5.3	249
24	Nonadiabatic Molecular Dynamics Modeling of the Intrachain Charge Transport in Conjugated Diketopyrrolo-pyrrole Polymers. Journal of Physical Chemistry C, 2014, 118, 6631-6640.	3.1	30
25	Correlation Function Formalism for Triplet Excited State Decay: Combined Spin–Orbit and Nonadiabatic Couplings. Journal of Chemical Theory and Computation, 2013, 9, 1132-1143.	5.3	198
26	Theoretical Understanding of AIE Phenomena Through Computational Chemistry. , 2013, , 357-398.		2
27	Theoretical Insights into the Aggregation-Induced Emission by Hydrogen Bonding: A QM/MM Study. Journal of Physical Chemistry A, 2012, 116, 3881-3888.	2.5	88
28	Theoretical insight into the aggregation induced emission phenomena of diphenyldibenzofulvene: a nonadiabatic molecular dynamics study. Physical Chemistry Chemical Physics, 2012, 14, 14207.	2.8	50
29	Theoretical design of polythienylenevinylene derivatives for improvements of light-emitting and photovoltaic performances. Journal of Materials Chemistry, 2012, 22, 4491.	6.7	41
30	Theory of Excited State Decays and Optical Spectra: Application to Polyatomic Molecules. Journal of Physical Chemistry A, 2010, 114, 7817-7831.	2.5	363