
Antonieta L De Cal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092750/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Secondary Metabolism Pathway Involved in the Production of a Putative Toxin Is Expressed at Early Stage of Monilinia laxa Infection. Frontiers in Plant Science, 2022, 13, 818483.	3.6	1
2	Influence of light on the Monilinia laxa – stone fruit interaction. Plant Pathology, 2021, 70, 326-335.	2.4	8
3	Effect of chemical alternatives to methyl bromide on soilâ€borne disease incidence and fungal populations in Spanish strawberry nurseries: A longâ€term study. Pest Management Science, 2021, 77, 766-774.	3.4	6
4	Light-Photoreceptors and Proteins Related to Monilinia laxa Photoresponses. Journal of Fungi (Basel,) Tj ETQqO	0 0 rgBT /0	Overlock 10 Tf
5	Field validation of biocontrol strategies to control brown rot on stone fruit in several European countries. Pest Management Science, 2021, 77, 2502-2511.	3.4	13
6	Epidemiological Studies of Brown Rot in Spanish Cherry Orchards in the Jerte Valley. Journal of Fungi (Basel, Switzerland), 2021, 7, 203.	3.5	9
7	Development of a multiplex PCR for the identification of Fusarium solani and F. oxysporum in a single step. Journal of Plant Diseases and Protection, 2021, 128, 1275-1290.	2.9	3
8	Comparative Genomics Used to Predict Virulence Factors and Metabolic Genes among Monilinia Species. Journal of Fungi (Basel, Switzerland), 2021, 7, 464.	3.5	11
9	Depicting the battle between nectarine and Monilinia laxa: the fruit developmental stage dictates the effectiveness of the host defenses and the pathogen's infection strategies. Horticulture Research, 2020, 7, 167.	6.3	25
10	Balance between resilient fruit surface microbial community and population of Monilinia spp. after biopesticide field applications of Penicillium frequentans. International Journal of Food Microbiology, 2020, 333, 108788.	4.7	5
11	Impact of Postharvest Handling on Preharvest Latent Infections Caused by Monilinia spp. in Nectarines. Journal of Fungi (Basel, Switzerland), 2020, 6, 266.	3.5	11
12	Proteomic Studies to Understand the Mechanisms of Peach Tissue Degradation by Monilinia laxa. Frontiers in Plant Science, 2020, 11, 1286.	3.6	12
13	Pectin as Carbon Source for <i>Monilinia laxa</i> Exoproteome and Expression Profiles of Related Genes. Molecular Plant-Microbe Interactions, 2020, 33, 1116-1128.	2.6	13
14	Impact of Genomic Resources on Improving the Mode of Action of Biocontrol Agents Against Plant Pathogens. Progress in Biological Control, 2020, , 203-229.	0.5	0
15	Biocontrol Should Focus on Multiple Pest Targets. Progress in Biological Control, 2020, , 127-145.	0.5	Ο
16	Which Biocontrol Strategies Best Fit with Other IPM System Components?. Progress in Biological Control, 2020, , 231-256.	0.5	0
17	Genetic Diversity and Vegetative Compatibility of <i>Fusarium solani</i> Species Complex of Strawberry in Spain. Phytopathology, 2019, 109, 2142-2151.	2.2	7
18	Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications. Environmental Science and Pollution Research, 2019, 26, 29138-29156.	5.3	5

#	Article	IF	CITATIONS
19	Characterization of <i>Fusarium solani</i> Populations Associated with Spanish Strawberry Crops. Plant Disease, 2019, 103, 1974-1982.	1.4	12
20	Labeling of Monilinia fructicola with GFP and Its Validation for Studies on Host-Pathogen Interactions in Stone and Pome Fruit. Genes, 2019, 10, 1033.	2.4	3
21	Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biological Control, 2019, 129, 45-54.	3.0	17
22	Degrading enzymes and phytotoxins in Monilinia spp. European Journal of Plant Pathology, 2019, 154, 305-318.	1.7	18
23	â€~Nazaret' Strawberry. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1384-1386.	1.0	1
24	Genome Sequence of the Brown Rot Fungal Pathogen Monilinia laxa. Genome Announcements, 2018, 6, .	0.8	17
25	Surfactant effects on wettability of <i>Penicillium frequentans</i> formulations to improve brown rot biocontrol. Journal of the Science of Food and Agriculture, 2018, 98, 5832-5840.	3.5	10
26	Molecular Techniques to Register and Commercialize a Penicillium rubens Strain as a Biocontrol Agent. , 2018, , 97-117.		5
27	Detection of Latent <i>Monilinia</i> Infections in Nectarine Flowers and Fruit by qPCR. Plant Disease, 2017, 101, 1002-1008.	1.4	12
28	Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit. International Journal of Food Microbiology, 2017, 254, 25-35.	4.7	18
29	Competition is the mechanism of biocontrol of brown rot in stone fruit by Penicillium frequentans. BioControl, 2017, 62, 557-566.	2.0	14
30	Biological control of brown rot in stone fruit using Bacillus amyloliquefaciens CPA-8 under field conditions. Crop Protection, 2017, 102, 72-80.	2.1	37
31	Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches. International Journal of Food Microbiology, 2017, 241, 117-122.	4.7	17
32	Microscopic Analyses of Latent and Visible Monilinia fructicola Infections in Nectarines. PLoS ONE, 2016, 11, e0160675.	2.5	23
33	Biocomes: new biological products for sustainable farming and forestry. Acta Horticulturae, 2016, , 469-472.	0.2	0
34	The effect of fungicide resistance on the structure of Monilinia laxa populations in Spanish peach and nectarine orchards. European Journal of Plant Pathology, 2016, 145, 815-827.	1.7	23
35	Growth and aggressiveness factors affecting Monilinia spp. survival peaches. International Journal of Food Microbiology, 2016, 227, 6-12.	4.7	22
36	The development of genetic and molecular markers to register and commercialize P enicillium rubens (formerly P enicillium oxalicum) strain 212 as a biocontrol agent. Microbial Biotechnology, 2016, 9, 89-99.	4.2	22

#	Article	IF	CITATIONS
37	Growth and aggressiveness factors affecting Monilinia spp. survival peaches. International Journal of Food Microbiology, 2016, 224, 22-27.	4.7	14
38	Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chemistry, 2016, 192, 268-273.	8.2	32
39	Sensitivity of Monilinia fructicola from Spanish peach orchards to thiophanate-methyl, iprodione, and cyproconazole: fitness analysis and competitiveness. European Journal of Plant Pathology, 2015, 141, 789-801.	1.7	38
40	Overwintering of <i><scp>M</scp>onilinia</i> spp. on Mummified Stone Fruit. Journal of Phytopathology, 2015, 163, 160-167.	1.0	14
41	Ecophysiological requirements on growth and survival of the biocontrol agent Penicillium oxalicum 212 in different sterile soils. Applied Soil Ecology, 2014, 78, 18-27.	4.3	4
42	Vegetative compatibility groups and sexual reproduction among Spanish Monilinia fructicola isolates obtained from peach and nectarine orchards, but not Monilinia laxa. Fungal Biology, 2014, 118, 484-494.	2.5	19
43	SOIL DISINFECTION IN SPANISH STRAWBERRY NURSERIES - THREE YEARS WITHOUT METHYL BROMIDE. Acta Horticulturae, 2014, , 691-696.	0.2	3
44	Occurrence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach orchards in Spain. European Journal of Plant Pathology, 2013, 137, 835-845.	1.7	67
45	Persistence, survival, vertical dispersion, and horizontal spread of the biocontrol agent, Penicillium oxalicum strain 212, in different soil types. Applied Soil Ecology, 2013, 67, 27-36.	4.3	12
46	Role of gluconic acid and pH modulation in virulence of Monilinia fructicola on peach fruit. Postharvest Biology and Technology, 2013, 86, 418-423.	6.0	31
47	<i>Penicillium oxalicum</i> reduces the number of cysts and juveniles of potato cyst nematodes. Journal of Applied Microbiology, 2013, 115, 199-206.	3.1	30
48	Use of Biofungicides for Controlling Plant Diseases to Improve Food Availability. Agriculture (Switzerland), 2012, 2, 109-124.	3.1	13
49	Secondary inoculum dynamics of Monilinia spp. and relationship to the incidence of postharvest brown rot in peaches and the weather conditions during the growing season. European Journal of Plant Pathology, 2012, 133, 585-598.	1.7	37
50	Analysis of genetic diversity in Monilinia fructicola from the Ebro Valley in Spain using ISSR and RAPD markers. European Journal of Plant Pathology, 2012, 132, 511-524.	1.7	30
51	Resistance of several strawberry cultivars against three different pathogens. Spanish Journal of Agricultural Research, 2012, 10, 502.	0.6	18
52	MONITORING CONIDIAL DENSITY OF MONILINIA SPP. ON PEACH SURFACE IN RELATION TO BROWN ROT DEVELOPMENT IN ORCHARDS. Acta Horticulturae, 2012, , 455-462.	0.2	0
53	High Chlorogenic and Neochlorogenic Acid Levels in Immature Peaches Reduce Monilinia laxa Infection by Interfering with Fungal Melanin Biosynthesis. Journal of Agricultural and Food Chemistry, 2011, 59, 3205-3213.	5.2	104
54	Primary Inoculum Sources of Monilinia spp. in Spanish Peach Orchards and Their Relative Importance in Brown Rot. Plant Disease, 2010, 94, 1048-1054.	1.4	40

#	Article	IF	CITATIONS
55	Development of a dried Penicillium oxalicum conidial formulation for use as a biological agent against Fusarium wilt of tomato: Selection of optimal additives and storage conditions for maintaining conidial viability. Biological Control, 2010, 54, 221-229.	3.0	19
56	Enhancing the adhesion of Epicoccum nigrum conidia to peach surfaces and its relationship to the biocontrol of brown rot caused by Monilinia laxa. Journal of Applied Microbiology, 2010, 109, 583-593.	3.1	15
57	Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biological Control, 2009, 51, 480-486.	3.0	38
58	Conidial density of Monilinia spp. on peach fruit surfaces in relation to the incidences of latent infections and brown rot. European Journal of Plant Pathology, 2009, 123, 415-424.	1.7	36
59	Population dynamics of <i>Epicoccum nigrum</i> , a biocontrol agent against brown rot in stone fruit. Journal of Applied Microbiology, 2009, 106, 592-605.	3.1	67
60	Relationship between number and type of adhesions of Penicillium oxalicum conidia to tomato roots and biological control of tomato wilt. Biological Control, 2009, 48, 244-251.	3.0	12
61	EVALUATION OF RESISTANCE OF SEVERAL STRAWBERRY SELECTIONS AGAINST MAIN FUNGAL PATHOGENS. Acta Horticulturae, 2009, , 211-214.	0.2	1
62	DETECTION OF STRAWBERRY PATHOGENS BY REAL-TIME PCR. Acta Horticulturae, 2009, , 263-266.	0.2	4
63	ALTERNATIVES TO METHYL BROMIDE FOR STRAWBERRY NURSERY PRODUCTION IN SPAIN. Acta Horticulturae, 2009, , 965-968.	0.2	2
64	First Report of Brown Rot Caused by Monilinia fructicola in Peach Orchards in Ebro Valley, Spain. Plant Disease, 2009, 93, 763-763.	1.4	63
65	The Peach Story. , 2009, , 197-207.		0
66	BIOTIC AND ABIOTIC FACTORS IN SOIL-BORNE DISEASES IN STRAWBERRY NURSERIES. Acta Horticulturae, 2009, , 215-218.	0.2	0
67	2007 STRAWBERRY NURSERIES RESULTS ON METHYL BROMIDE ALTERNATIVES: WEED CONTROL AND PRODUCTION. Acta Horticulturae, 2009, , 683-686.	0.2	Ο
68	Relationship between the incidence of latent infections caused by Monilinia spp. and the incidence of brown rot of peach fruit: factors affecting latent infection. European Journal of Plant Pathology, 2008, 121, 487-498.	1.7	71
69	Penicillium frequentans population dynamics on peach fruits after its applications against brown rot in orchards. Journal of Applied Microbiology, 2008, 104, 659-671.	3.1	20
70	Influence of additives on adhesion of Penicillium frequentans conidia to peach fruit surfaces and relationship to the biocontrol of brown rot caused by Monilinia laxa. International Journal of Food Microbiology, 2008, 126, 24-29.	4.7	9
71	Biocontrol of powdery mildew by Penicillium oxalicum in open-field nurseries of strawberries. Biological Control, 2008, 47, 103-107.	3.0	48
72	Effects of different biological formulations of Penicillium frequentans on brown rot of peaches. Biological Control, 2007, 42, 86-96.	3.0	36

#	Article	IF	CITATIONS
73	Control of post-harvest brown rot on nectarine byEpicoccum nigrum and physico-chemical treatments. Journal of the Science of Food and Agriculture, 2007, 87, 1271-1277.	3.5	59
74	Effects of stabilizers on shelf-life of Epicoccum nigrum formulations and their relationship with biocontrol of postharvest brown rot by Monilinia of peaches. Journal of Applied Microbiology, 2007, 102, 570-82.	3.1	32
75	Effect of stabilizers on the shelf-life of Penicillium frequentans conidia and their efficacy as a biological agent against peach brown rot. International Journal of Food Microbiology, 2007, 113, 117-124.	4.7	50
76	Biocontrol of tomato wilt by Penicillium oxalicum formulations in different crop conditions. Biological Control, 2006, 37, 256-265.	3.0	42
77	Effect of drying on conidial viability ofPenicillium frequentans, a biological control agent against peach brown rot disease caused byMoniliniaspp. Biocontrol Science and Technology, 2006, 16, 257-269.	1.3	45
78	Dispersal Improvement of a Powder Formulation of Penicillium oxalicum, a Biocontrol Agent of Tomato Wilt. Plant Disease, 2005, 89, 1317-1323.	1.4	41
79	Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biological Control, 2005, 32, 305-310.	3.0	174
80	Effect of chemical fumigation on soil fungal communities in Spanish strawberry nurseries. Applied Soil Ecology, 2005, 28, 47-56.	4.3	52
81	Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. International Journal of Food Microbiology, 2004, 94, 161-167.	4.7	40
82	Chemical Alternatives to Methyl Bromide in Spanish Strawberry Nurseries. Plant Disease, 2004, 88, 210-214.	1.4	73
83	Drying of Conidia of Penicillium oxalicum, a Biological Control Agent against Fusarium Wilt of Tomato. Journal of Phytopathology, 2003, 151, 600-606.	1.0	59
84	Biocontrol of Fusarium and Verticillium Wilt of Tomato by Penicillium oxalicum under Greenhouse and Field Conditions. Journal of Phytopathology, 2003, 151, 507-512.	1.0	82
85	Drying of Epicoccum nigrum conidia for obtaining a shelf-stable biological product against brown rot disease. Journal of Applied Microbiology, 2003, 94, 508-514.	3.1	44
86	Mass Production of Conidia of Penicillium frequentans , a Biocontrol Agent Against Brown Rot of Stone Fruits. Biocontrol Science and Technology, 2002, 12, 715-725.	1.3	27
87	Production, Survival, and Evaluation of Solid-Substrate Inocula of Penicillium oxalicum, a Biocontrol Agent Against Fusarium Wilt of Tomato. Phytopathology, 2002, 92, 863-869.	2.2	42
88	Repeated applications of Penicillium oxalicum prolongs biocontrol of fusarium wilt of tomato plants. European Journal of Plant Pathology, 2001, 107, 805-811.	1.7	13
89	Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. Journal of Applied Microbiology, 2000, 89, 847-853.	3.1	45
90	Induced Resistance by Penicillium oxalicum Against Fusarium oxysporum f. sp. lycopersici: Histological Studies of Infected and Induced Tomato Stems. Phytopathology, 2000, 90, 260-268.	2.2	73

#	Article	IF	CITATIONS
91	Effects of timing and method of application of Penicillium oxalicum on efficacy and duration of control of Fusarium wilt of tomato. Plant Pathology, 1999, 48, 260-266.	2.4	37
92	Effects of Long-Wave UV Light on Monilinia Growth and Identification of Species. Plant Disease, 1999, 83, 62-65.	1.4	68
93	Infectivity of Chlamydospores vs Microconidia of <i>Fusarium oxysporum</i> f.sp. <i>lycopersici</i> on Tomato. Journal of Phytopathology, 1997, 145, 231-233.	1.0	32
94	Ecophysiological factors affecting growth, sporulation and survival of the biocontrol agent Penicillium oxalicum. Mycopathologia, 1997, 139, 43-50.	3.1	25
95	Involvement of resistance induction by Penicillum oxalicum in the biocontrol of tomato wilt. Plant Pathology, 1997, 46, 72-79.	2.4	67
96	A rapid laboratory method for assessing the biological control potential of Penicillium oxalicum against Fusarium wilt of tomato. Plant Pathology, 1997, 46, 699-707.	2.4	27
97	In vitro studies on the effects of fungicides on beneficial fungi of peach twig mycoflora. Mycopathologia, 1994, 126, 15-20.	3.1	11
98	Effects of pyroquilon on the infection process ofMonilinia laxacausing peach twig blight. Pest Management Science, 1993, 39, 267-269.	0.4	6
99	Nutritional requirements of antagonists to peach twig blight,Monilinia laxa, in relation to biocontrol. Mycopathologia, 1993, 121, 21-26.	3.1	8
100	Determination of Fungicide Residues in Peach Trees. International Journal of Environmental Analytical Chemistry, 1989, 37, 35-43.	3.3	9