César Muñoz Fontela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092500/publications.pdf

Version: 2024-02-01

52 papers

3,987 citations

218677 26 h-index 52 g-index

52 all docs

52 docs citations

52 times ranked 8384 citing authors

#	Article	IF	CITATIONS
1	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
2	Inactivation Methods for Experimental Nipah Virus Infection. Viruses, 2022, 14, 1052.	3. 3	5
3	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 507-516.	9.1	26
4	Metagenomic Snapshots of Viral Components in Guinean Bats. Microorganisms, 2021, 9, 599.	3 . 6	10
5	Reduced Nucleoprotein Availability Impairs Negative-Sense RNA Virus Replication and Promotes Host Recognition. Journal of Virology, 2021, 95, .	3.4	26
6	Development and validation of portable, field-deployable Ebola virus point-of-encounter diagnostic assay for wildlife surveillance. One Health Outlook, 2021, 3, 9.	3. 4	3
7	Factors associated with progression to death in patients with Lassa fever in Nigeria: an observational study. Lancet Infectious Diseases, The, 2021, 21, 876-886.	9.1	8
8	SARS-CoV-2 Variants and Vaccines. New England Journal of Medicine, 2021, 385, 179-186.	27.0	322
9	Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. MBio, 2021, 12, e0097221.	4.1	6
10	Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. European Journal of Medicinal Chemistry, 2021, 223, 113654.	5 . 5	10
11	N-terminal VP1 Truncations Favor T = 1 Norovirus-Like Particles. Vaccines, 2021, 9, 8.	4.4	15
12	Quantification of Type I Interferon Inhibition by Viral Proteins: Ebola Virus as a Case Study. Viruses, 2021, 13, 2441.	3. 3	1
13	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
14	Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Frontiers in Immunology, 2020, 11, 586595.	4.8	8
15	Chikungunya Outbreak in the Republic of the Congo, 2019—Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation. Viruses, 2020, 12, 1020.	3.3	15
16	Ebola Virus Disease Survivors Show More Efficient Antibody Immunity than Vaccinees Despite Similar Levels of Circulating Immunoglobulins. Viruses, 2020, 12, 915.	3.3	13
17	Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. Journal of Virology, 2020, 94, .	3.4	14
18	Regulation of the Ebola Virus VP24 Protein by SUMO. Journal of Virology, 2019, 94, .	3.4	19

#	Article	IF	Citations
19	Role of Type I Interferons on Filovirus Pathogenesis. Vaccines, 2019, 7, 22.	4.4	6
20	Comparative pathogenesis of Ebola virus and Reston virus infection in humanized mice. JCI Insight, 2019, 4, .	5.0	26
21	Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. Journal of Virology, 2018, 92, .	3.4	36
22	Immune barriers of Ebola virus infection. Current Opinion in Virology, 2018, 28, 152-160.	5.4	25
23	T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. Journal of Infectious Diseases, 2018, 218, S508-S518.	4.0	25
24	Kinetics of Soluble Mediators of the Host Response in Ebola Virus Disease. Journal of Infectious Diseases, 2018, 218, S496-S503.	4.0	25
25	Comprehensive characterization of cellular immune responses following Ebola virus infection. Journal of Infectious Diseases, 2017, 215, jiw508.	4.0	38
26	Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biology, 2017, 18, 4.	8.8	115
27	Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. Journal of Infectious Diseases, 2017, 215, 70-79.	4.0	15
28	The gap between animal and human Ebola virus disease. Future Virology, 2017, 12, 61-65.	1.8	1
29	Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Scientific Reports, 2017, 7, 43776.	3.3	31
30	Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. Journal of Virology, 2017, 91, .	3.4	33
31	Ebola Virus Disease in Humans: Pathophysiology and Immunity. Current Topics in Microbiology and Immunology, 2017, 411, 141-169.	1.1	31
32	Monocyteâ€derived dendritic cells enhance protection against secondary influenza challenge by controlling the switch in CD8 ⁺ Tâ€cell immunodominance. European Journal of Immunology, 2017, 47, 345-352.	2.9	13
33	Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathogens, 2016, 12, e1005656.	4.7	41
34	Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352, aad7993.	12.6	132
35	Unique human immune signature of Ebola virus disease in Guinea. Nature, 2016, 533, 100-104.	27.8	170
36	Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nature Reviews Immunology, 2016, 16, 741-750.	22.7	262

#	Article	IF	Citations
37	Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16 ⁺ Monocytes. Journal of Infectious Diseases, 2016, 214, S275-S280.	4.0	31
38	Regulation of Ebola virus VP40 matrix protein by SUMO. Scientific Reports, 2016, 6, 37258.	3.3	17
39	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	3.3	70
40	Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. Journal of Infectious Diseases, 2016, 213, 934-938.	4.0	95
41	Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Medical Microbiology and Immunology, 2016, 205, 269-273.	4.8	142
42	Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. Journal of Visualized Experiments, 2015, , e52803.	0.3	1
43	Human Invasive Muscular Sarcocystosis Induces Th2 Cytokine Polarization and Biphasic Cytokine Changes, Based on an Investigation among Travelers Returning from Tioman Island, Malaysia. Vaccine Journal, 2015, 22, 674-677.	3.1	5
44	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	27.8	272
45	Ebola Virus Disease in Mice with Transplanted Human Hematopoietic Stem Cells. Journal of Virology, 2015, 89, 4700-4704.	3.4	36
46	Zika virus infections imported to Italy: Clinical, immunological and virological findings, and public health implications. Journal of Clinical Virology, 2015, 63, 32-35.	3.1	158
47	Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influenza Vaccines via Enhanced Dendritic Cell Function and T Cell Immunity. Journal of Immunology, 2014, 193, 1324-1332.	0.8	42
48	Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 2014, 105, 17-21.	4.1	428
49	Acetylation is indispensable for p53 antiviral activity. Cell Cycle, 2011, 10, 3701-3705.	2.6	41
50	p53 Serves as a Host Antiviral Factor That Enhances Innate and Adaptive Immune Responses to Influenza A Virus. Journal of Immunology, 2011, 187, 6428-6436.	0.8	77
51	Kaposi's Sarcoma-Associated Herpesvirus Protein LANA2 Disrupts PML Oncogenic Domains and Inhibits PML-Mediated Transcriptional Repression of the Survivin Gene. Journal of Virology, 2009, 83, 8849-8858.	3.4	75
52	Transcriptional role of p53 in interferon-mediated antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1929-1938.	8.5	205