César Muñoz Fontela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092500/publications.pdf

Version: 2024-02-01

CÃOSAR MUÃ+OZ FONTELA

#	Article	IF	CITATIONS
1	Animal models for COVID-19. Nature, 2020, 586, 509-515.	13.7	705
2	Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 2014, 105, 17-21.	1.9	428
3	SARS-CoV-2 Variants and Vaccines. New England Journal of Medicine, 2021, 385, 179-186.	13.9	322
4	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	13.7	272
5	Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nature Reviews Immunology, 2016, 16, 741-750.	10.6	262
6	Transcriptional role of p53 in interferon-mediated antiviral immunity. Journal of Experimental Medicine, 2008, 205, 1929-1938.	4.2	205
7	Unique human immune signature of Ebola virus disease in Guinea. Nature, 2016, 533, 100-104.	13.7	170
8	Zika virus infections imported to Italy: Clinical, immunological and virological findings, and public health implications. Journal of Clinical Virology, 2015, 63, 32-35.	1.6	158
9	Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Medical Microbiology and Immunology, 2016, 205, 269-273.	2.6	142
10	Topoisomerase 1 inhibition suppresses inflammatory genes and protects from death by inflammation. Science, 2016, 352, aad7993.	6.0	132
11	Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biology, 2017, 18, 4.	3.8	115
12	Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. Journal of Infectious Diseases, 2016, 213, 934-938.	1.9	95
13	p53 Serves as a Host Antiviral Factor That Enhances Innate and Adaptive Immune Responses to Influenza A Virus. Journal of Immunology, 2011, 187, 6428-6436.	0.4	77
14	Kaposi's Sarcoma-Associated Herpesvirus Protein LANA2 Disrupts PML Oncogenic Domains and Inhibits PML-Mediated Transcriptional Repression of the Survivin Gene. Journal of Virology, 2009, 83, 8849-8858.	1.5	75
15	Cell senescence is an antiviral defense mechanism. Scientific Reports, 2016, 6, 37007.	1.6	70
16	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	2.1	61
17	Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influenza Vaccines via Enhanced Dendritic Cell Function and T Cell Immunity. Journal of Immunology, 2014, 193, 1324-1332.	0.4	42
18	Acetylation is indispensable for p53 antiviral activity. Cell Cycle, 2011, 10, 3701-3705.	1.3	41

César Muñoz Fontela

#	Article	IF	CITATIONS
19	Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathogens, 2016, 12, e1005656.	2.1	41
20	Comprehensive characterization of cellular immune responses following Ebola virus infection. Journal of Infectious Diseases, 2017, 215, jiw508.	1.9	38
21	Ebola Virus Disease in Mice with Transplanted Human Hematopoietic Stem Cells. Journal of Virology, 2015, 89, 4700-4704.	1.5	36
22	Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. Journal of Virology, 2018, 92, .	1.5	36
23	Novel Cross-Reactive Monoclonal Antibodies against Ebolavirus Glycoproteins Show Protection in a Murine Challenge Model. Journal of Virology, 2017, 91, .	1.5	33
24	Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16 ⁺ Monocytes. Journal of Infectious Diseases, 2016, 214, S275-S280.	1.9	31
25	Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Scientific Reports, 2017, 7, 43776.	1.6	31
26	Ebola Virus Disease in Humans: Pathophysiology and Immunity. Current Topics in Microbiology and Immunology, 2017, 411, 141-169.	0.7	31
27	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 507-516.	4.6	26
28	Reduced Nucleoprotein Availability Impairs Negative-Sense RNA Virus Replication and Promotes Host Recognition. Journal of Virology, 2021, 95, .	1.5	26
29	Comparative pathogenesis of Ebola virus and Reston virus infection in humanized mice. JCI Insight, 2019, 4, .	2.3	26
30	Immune barriers of Ebola virus infection. Current Opinion in Virology, 2018, 28, 152-160.	2.6	25
31	T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. Journal of Infectious Diseases, 2018, 218, S508-S518.	1.9	25
32	Kinetics of Soluble Mediators of the Host Response in Ebola Virus Disease. Journal of Infectious Diseases, 2018, 218, S496-S503.	1.9	25
33	Regulation of the Ebola Virus VP24 Protein by SUMO. Journal of Virology, 2019, 94, .	1.5	19
34	Regulation of Ebola virus VP40 matrix protein by SUMO. Scientific Reports, 2016, 6, 37258.	1.6	17
35	Humanized Mice Reproduce Acute and Persistent Human Adenovirus Infection. Journal of Infectious Diseases, 2017, 215, 70-79.	1.9	15
36	Chikungunya Outbreak in the Republic of the Congo, 2019—Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation. Viruses, 2020, 12, 1020.	1.5	15

#	Article	IF	CITATIONS
37	N-terminal VP1 Truncations Favor T = 1 Norovirus-Like Particles. Vaccines, 2021, 9, 8.	2.1	15
38	Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. Journal of Virology, 2020, 94, .	1.5	14
39	Monocyteâ€derived dendritic cells enhance protection against secondary influenza challenge by controlling the switch in CD8 ⁺ Tâ€cell immunodominance. European Journal of Immunology, 2017, 47, 345-352.	1.6	13
40	Ebola Virus Disease Survivors Show More Efficient Antibody Immunity than Vaccinees Despite Similar Levels of Circulating Immunoglobulins. Viruses, 2020, 12, 915.	1.5	13
41	Metagenomic Snapshots of Viral Components in Guinean Bats. Microorganisms, 2021, 9, 599.	1.6	10
42	Potential pharmacological strategies targeting the Niemann-Pick C1 receptor and Ebola virus glycoprotein interaction. European Journal of Medicinal Chemistry, 2021, 223, 113654.	2.6	10
43	Designs and Characterization of Subunit Ebola GP Vaccine Candidates: Implications for Immunogenicity. Frontiers in Immunology, 2020, 11, 586595.	2.2	8
44	Factors associated with progression to death in patients with Lassa fever in Nigeria: an observational study. Lancet Infectious Diseases, The, 2021, 21, 876-886.	4.6	8
45	Role of Type I Interferons on Filovirus Pathogenesis. Vaccines, 2019, 7, 22.	2.1	6
46	Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. MBio, 2021, 12, e0097221.	1.8	6
47	Human Invasive Muscular Sarcocystosis Induces Th2 Cytokine Polarization and Biphasic Cytokine Changes, Based on an Investigation among Travelers Returning from Tioman Island, Malaysia. Vaccine Journal, 2015, 22, 674-677.	3.2	5
48	Inactivation Methods for Experimental Nipah Virus Infection. Viruses, 2022, 14, 1052.	1.5	5
49	Development and validation of portable, field-deployable Ebola virus point-of-encounter diagnostic assay for wildlife surveillance. One Health Outlook, 2021, 3, 9.	1.4	3
50	Intranasal Administration of Recombinant Influenza Vaccines in Chimeric Mouse Models to Study Mucosal Immunity. Journal of Visualized Experiments, 2015, , e52803.	0.2	1
51	The gap between animal and human Ebola virus disease. Future Virology, 2017, 12, 61-65.	0.9	1
52	Quantification of Type I Interferon Inhibition by Viral Proteins: Ebola Virus as a Case Study. Viruses, 2021, 13, 2441.	1.5	1