Jacob Kongsted

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092484/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <scp>D</scp> alton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 269-284.	6.2	1,166
2	Excited States in Solution through Polarizable Embedding. Journal of Chemical Theory and Computation, 2010, 6, 3721-3734.	2.3	293
3	Electronic Energy Transfer in Condensed Phase Studied by a Polarizable QM/MM Model. Journal of Chemical Theory and Computation, 2009, 5, 1838-1848.	2.3	259
4	Polarizability of molecular clusters as calculated by a dipole interaction model. Journal of Chemical Physics, 2002, 116, 4001-4010.	1.2	180
5	Benchmarking two-photon absorption cross sections: performance of CC2 and CAM-B3LYP. Physical Chemistry Chemical Physics, 2015, 17, 19306-19314.	1.3	160
6	Molecular Properties through Polarizable Embedding. Advances in Quantum Chemistry, 2011, 61, 107-143.	0.4	145
7	Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. Journal of Chemical Physics, 2007, 126, 154112.	1.2	144
8	The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. Journal of Medicinal Chemistry, 2019, 62, 4851-4883.	2.9	124
9	Photosynthetic Light-Harvesting Is Tuned by the Heterogeneous Polarizable Environment of the Protein. Journal of the American Chemical Society, 2011, 133, 3078-3084.	6.6	123
10	Benchmarking Time-Dependent Density Functional Theory for Excited State Geometries of Organic Molecules in Gas-Phase and in Solution. Journal of Chemical Theory and Computation, 2013, 9, 2209-2220.	2.3	123
11	The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Molecular Physics, 2002, 100, 1813-1828.	0.8	122
12	An improved method to predict the entropy term with the MM/PBSA approach. Journal of Computer-Aided Molecular Design, 2009, 23, 63-71.	1.3	122
13	Excitation Energies in Solution: The Fully Polarizable QM/MM/PCM Method. Journal of Physical Chemistry B, 2011, 115, 3027-3037.	1.2	118
14	Linear response functions for coupled cluster/molecular mechanics including polarization interactions. Journal of Chemical Physics, 2003, 118, 1620-1633.	1.2	117
15	The polarizable embedding coupled cluster method. Journal of Chemical Physics, 2011, 134, 104108.	1.2	117
16	Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry, 2019, 62, 9375-9414.	2.9	108
17	Coupled Cluster Calculation of the n → π* Electronic Transition of Acetone in Aqueous Solution. Journal of Physical Chemistry A, 2005, 109, 8001-8010.	1.1	107
18	Coupled cluster calculations of the optical rotation of S-propylene oxide in gas phase and solution. Chemical Physics Letters, 2005, 401, 385-392.	1.2	94

#	Article	IF	CITATIONS
19	Scrutinizing the effects of polarization in QM/MM excited state calculations. Physical Chemistry Chemical Physics, 2011, 13, 18551.	1.3	94
20	Breakdown of the first hyperpolarizability/bond-length alternation parameter relationship. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16453-16458.	3.3	84
21	Ligand Affinities Estimated by Quantum Chemical Calculations. Journal of Chemical Theory and Computation, 2010, 6, 1726-1737.	2.3	81
22	Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in <i>para</i> -nitroaniline. Molecular Physics, 2013, 111, 1235-1248.	0.8	79
23	Optimized Basis Sets for Calculation of Electron Paramagnetic Resonance Hyperfine Coupling Constants: aug-cc-pVTZ-J for the 3d Atoms Sc–Zn. Journal of Chemical Theory and Computation, 2011, 7, 4077-4087.	2.3	78
24	Polarizable Density Embedding: A New QM/QM/MM-Based Computational Strategy. Journal of Physical Chemistry A, 2015, 119, 5344-5355.	1.1	78
25	Excited states in large molecular systems through polarizable embedding. Physical Chemistry Chemical Physics, 2016, 18, 20234-20250.	1.3	78
26	Coupled Cluster and Density Functional Theory Studies of the Vibrational Contribution to the Optical Rotation of (S)-Propylene Oxide. Journal of the American Chemical Society, 2006, 128, 976-982.	6.6	77
27	On the performance of quantum chemical methods to predict solvatochromic effects: The case of acrolein in aqueous solution. Journal of Chemical Physics, 2008, 128, 194503.	1.2	76
28	A combined quantum mechanics/molecular mechanics study of the one- and two-photon absorption in the green fluorescent protein. Physical Chemistry Chemical Physics, 2012, 14, 5440.	1.3	76
29	Solvent effects on the n→π[sup â^—] electronic transition in formaldehyde: A combined coupled cluster/molecular dynamics study. Journal of Chemical Physics, 2004, 121, 8435.	1.2	75
30	Solvation Effects on Electronic Transitions: Exploring the Performance of Advanced Solvent Potentials in Polarizable Embedding Calculations. Journal of Chemical Theory and Computation, 2011, 7, 2209-2217.	2.3	75
31	PERI–CC2: A Polarizable Embedded RI-CC2 Method. Journal of Chemical Theory and Computation, 2012, 8, 3274-3283.	2.3	75
32	Solvent Effects on NMR Isotropic Shielding Constants. A Comparison between Explicit Polarizable Discrete and Continuum Approaches. Journal of Physical Chemistry A, 2007, 111, 4199-4210.	1.1	74
33	Automatic generation of force fields and property surfaces for use in variational vibrational calculations of anharmonic vibrational energies and zero-point vibrational averaged properties. Journal of Chemical Physics, 2006, 125, 124108.	1.2	72
34	Benchmarking NMR indirect nuclear spin-spin coupling constants: SOPPA, SOPPA(CC2), and SOPPA(CCSD) versus CCSD. Journal of Chemical Physics, 2010, 133, 144106.	1.2	72
35	Coupled Cluster/Molecular Mechanics Method:  Implementation and Application to Liquid Water. Journal of Physical Chemistry A, 2003, 107, 2578-2588.	1.1	70
36	Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharmaceutica Sinica B, 2021, 11, 3035-3059.	5.7	70

#	Article	IF	CITATIONS
37	How accurate are continuum solvation models for drug-like molecules?. Journal of Computer-Aided Molecular Design, 2009, 23, 395-409.	1.3	68
38	Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. Journal of Chemical Physics, 2004, 120, 3787-3798.	1.2	67
39	The combined multiconfigurational self-consistent-field/molecular mechanics wave function approach. Journal of Chemical Physics, 2001, 115, 2393-2400.	1.2	66
40	Solvatochromic Shifts in Uracil: A Combined MD-QM/MM Study. Journal of Chemical Theory and Computation, 2010, 6, 249-256.	2.3	66
41	Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. Physical Chemistry Chemical Physics, 2011, 13, 12506.	1.3	64
42	How to Model Solvent Effects on Molecular Properties Using Quantum Chemistry? Insights from Polarizable Discrete or Continuum Solvation Models. Journal of Physical Chemistry A, 2007, 111, 9890-9900.	1.1	62
43	Basis Set Convergence of Indirect Spin–Spin Coupling Constants in the Kohn–Sham Limit for Several Small Molecules. Journal of Physical Chemistry A, 2012, 116, 3728-3738.	1.1	61
44	Local electric fields and molecular properties in heterogeneous environments through polarizable embedding. Physical Chemistry Chemical Physics, 2016, 18, 10070-10080.	1.3	60
45	Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models. Journal of Chemical Physics, 2007, 126, 034510.	1.2	59
46	Interpretation of the Ultrafast Photoinduced Processes in Pentacene Thin Films. Journal of the American Chemical Society, 2010, 132, 3431-3439.	6.6	59
47	Accurate Predictions of Nonpolar Solvation Free Energies Require Explicit Consideration of Binding-Site Hydration. Journal of the American Chemical Society, 2011, 133, 13081-13092.	6.6	56
48	Nonlinear optical response properties of molecules in condensed phases using the coupled cluster/dielectric continuum or molecular mechanics methods. Journal of Chemical Physics, 2003, 119, 10519-10535.	1.2	55
49	Statistical mechanically averaged molecular properties of liquid water calculated using the combined coupled cluster/molecular dynamics method. Journal of Chemical Physics, 2006, 124, 124503.	1.2	55
50	Demystifying the solvatochromic reversal in Brooker's merocyanine dye. Physical Chemistry Chemical Physics, 2011, 13, 1290-1292.	1.3	55
51	Automatic generation of potential energy and property surfaces of polyatomic molecules in normal coordinates. Journal of Chemical Physics, 2007, 127, 204106.	1.2	54
52	Molecular-Level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore. Journal of Physical Chemistry Letters, 2012, 3, 3513-3521.	2.1	54
53	Polarizable Density Embedding: A Solution to the Electron Spill-Out Problem in Multiscale Modeling. Journal of Physical Chemistry Letters, 2017, 8, 5949-5958.	2.1	53
54	Linear Response Properties of Liquid Water Calculated Using CC2 and CCSD within Different Molecular Mechanics Methodsâ€. Journal of Physical Chemistry A, 2004, 108, 8646-8658.	1.1	52

#	Article	IF	CITATIONS
55	Modeling the Structure and Absorption Spectra of Stilbazolium Merocyanine in Polar and Nonpolar Solvents Using Hybrid QM/MM Techniques. Journal of Physical Chemistry B, 2010, 114, 13349-13357.	1.2	52
56	Toward Reliable Prediction of the Energy Ladder in Multichromophoric Systems: A Benchmark Study on the FMO Light-Harvesting Complex. Journal of Chemical Theory and Computation, 2013, 9, 4928-4938.	2.3	52
57	Theoretical Study of the Electronic Gas-Phase Spectrum of Glycine, Alanine, and Related Amines and Carboxylic Acids. Journal of Physical Chemistry A, 2005, 109, 1430-1440.	1.1	51
58	Linear response functions for a vibrational configuration interaction state. Journal of Chemical Physics, 2006, 125, 214309.	1.2	51
59	On the Accuracy of Density Functional Theory to Predict Shifts in Nuclear Magnetic Resonance Shielding Constants due to Hydrogen Bonding. Journal of Chemical Theory and Computation, 2008, 4, 267-277.	2.3	51
60	Performance of popular XCâ€functionals for the description of excitation energies in GFPâ€like chromophore models. International Journal of Quantum Chemistry, 2012, 112, 789-800.	1.0	51
61	Solvent effects on zero-point vibrational corrections to optical rotations and nuclear magnetic resonance shielding constants. Chemical Physics Letters, 2008, 451, 226-232.	1.2	50
62	Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials. Journal of Chemical Theory and Computation, 2015, 11, 1832-1842.	2.3	50
63	Energy Flow in the Cryptophyte PE545 Antenna Is Directed by Bilin Pigment Conformation. Journal of Physical Chemistry B, 2013, 117, 4263-4273.	1.2	49
64	Prediction of spin-spin coupling constants in solution based on combined density functional theory/molecular mechanics. Journal of Chemical Physics, 2009, 130, 134508.	1.2	48
65	On the Photophysics of Carotenoids: A Multireference DFT Study of Peridinin. Journal of Physical Chemistry B, 2013, 117, 13808-13815.	1.2	48
66	Damped Response Theory in Combination with Polarizable Environments: The Polarizable Embedding Complex Polarization Propagator Method. Journal of Chemical Theory and Computation, 2014, 10, 1164-1171.	2.3	48
67	Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method. Chemical Physics Letters, 2002, 364, 379-386.	1.2	47
68	Analysis of computational models for an accurate study of electronic excitations in GFP. Physical Chemistry Chemical Physics, 2015, 17, 2582-2588.	1.3	47
69	The multi-configuration self-consistent field method within a polarizable embedded framework. Journal of Chemical Physics, 2013, 139, 044101.	1.2	46
70	Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. Journal of Chemical Physics, 2020, 152, 214115.	1.2	45
71	Then→ π* Electronic Transition in Microsolvated Formaldehyde. A Coupled Cluster and Combined Coupled Cluster/Molecular Mechanics Studyâ€. Journal of Physical Chemistry A, 2004, 108, 8624-8632.	1.1	44
72	Inclusion of Terpenoid Plant Extracts in Lipid Bilayers Investigated by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114, 15825-15831.	1.2	44

#	Article	IF	CITATIONS
73	A polarizable embedding DFT study of one-photon absorption in fluorescent proteins. Physical Chemistry Chemical Physics, 2013, 15, 4735.	1.3	44
74	Carotenoids and Light-Harvesting: From DFT/MRCI to the Tamm–Dancoff Approximation. Journal of Chemical Theory and Computation, 2015, 11, 655-666.	2.3	44
75	Calculation of Vibrational Infrared Intensities and Raman Activities Using Explicit Anharmonic Wave Functions. Journal of Physical Chemistry A, 2007, 111, 11205-11213.	1.1	43
76	On the importance of vibrational contributions to small-angle optical rotation: Fluoro-oxirane in gas phase and solution. Journal of Chemical Physics, 2009, 130, 034310.	1.2	43
77	Frequency-Dependent Polarizability of Boron Nitride Nanotubes:Â A Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 10243-10248.	1.2	42
78	Solvent Effects on Rotatory Strength Tensors. 1. Theory and Application of the Combined Coupled Cluster/Dielectric Continuum Model. Journal of Physical Chemistry A, 2004, 108, 3632-3641.	1.1	42
79	Averaged Solvent Embedding Potential Parameters for Multiscale Modeling of Molecular Properties. Journal of Chemical Theory and Computation, 2016, 12, 1684-1695.	2.3	42
80	Color modeling of protein optical probes. Physical Chemistry Chemical Physics, 2012, 14, 1107-1112.	1.3	40
81	The Role of Molecular Conformation and Polarizable Embedding for One- and Two-Photon Absorption of Disperse Orange 3 in Solution. Journal of Physical Chemistry B, 2012, 116, 8169-8181.	1.2	40
82	Unraveling the similarity of the photoabsorption of deprotonated p-coumaric acid in the gas phase and within the photoactive yellow protein. Physical Chemistry Chemical Physics, 2011, 13, 1585-1589.	1.3	39
83	Relation between Nonlinear Optical Properties of Push–Pull Molecules and Metric of Charge Transfer Excitations. Journal of Chemical Theory and Computation, 2015, 11, 4182-4188.	2.3	39
84	Charge transfer excitation energies in pyridine–silver complexes studied by a QM/MM method. Chemical Physics Letters, 2009, 470, 285-288.	1.2	38
85	On the importance of excited state dynamic response electron correlation in polarizable embedding methods. Journal of Computational Chemistry, 2012, 33, 2012-2022.	1.5	38
86	Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2015, 59, 3518-3528.	1.4	38
87	A CC2 dielectric continuum model and a CC2 molecular mechanics model. Molecular Physics, 2003, 101, 2055-2071.	0.8	37
88	Gas phase optical rotation calculated from coupled cluster theory with zeroâ€point vibrational corrections from density functional theory. Chirality, 2009, 21, E68-75.	1.3	37
89	Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential. Journal of Chemical Theory and Computation, 2014, 10, 981-988.	2.3	37
90	Response properties of embedded molecules through the polarizable embedding model. International Journal of Quantum Chemistry, 2019, 119, e25717.	1.0	37

#	Article	IF	CITATIONS
91	Convergence of environment polarization effects in multiscale modeling of excitation energies. Computational and Theoretical Chemistry, 2014, 1040-1041, 304-311.	1.1	36
92	Two-photon absorption cross sections: An investigation of solvent effects. Theoretical studies on formaldehyde and water. Journal of Chemical Physics, 2006, 125, 184501.	1.2	35
93	Twoâ€Photon Solvatochromism II: Experimental and Theoretical Study of Solvent Effects on the Twoâ€Photon Absorption Spectrum of Reichardt's Dye. ChemPhysChem, 2013, 14, 3731-3739.	1.0	32
94	The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein. Journal of Chemical Theory and Computation, 2017, 13, 6230-6236.	2.3	32
95	Benchmarking SOPPA(CC2) for the calculation of indirect nuclear spin–spin coupling constants: Carbocycles. Chemical Physics, 2011, 381, 35-43.	0.9	31
96	Quantification of the π–π Interactions that Govern Tertiary Structure in Donor–Acceptor [2]Pseudorotaxanes. Journal of the American Chemical Society, 2012, 134, 3857-3863.	6.6	31
97	Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals. Physical Chemistry Chemical Physics, 2012, 14, 10669.	1.3	31
98	Computational screening of one- and two-photon spectrally tuned channelrhodopsin mutants. Physical Chemistry Chemical Physics, 2013, 15, 7567.	1.3	31
99	Dehydroergosterol as an Analogue for Cholesterol: Why It Mimics Cholesterol So Well—or Does It?. Journal of Physical Chemistry B, 2014, 118, 7345-7357.	1.2	31
100	A Click Chemistry Approach to Pleuromutilin Derivatives, Part 2: Conjugates with Acyclic Nucleosides and Their Ribosomal Binding and Antibacterial Activity. Journal of Medicinal Chemistry, 2012, 55, 2067-2077.	2.9	30
101	Validating and Analyzing EPR Hyperfine Coupling Constants with Density Functional Theory. Journal of Chemical Theory and Computation, 2013, 9, 2380-2388.	2.3	29
102	Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe. Journal of Physical Chemistry Letters, 2013, 4, 70-77.	2.1	29
103	Polarizable embedding with a multiconfiguration short-range density functional theory linear response method. Journal of Chemical Physics, 2015, 142, 114113.	1.2	29
104	Avoiding Electron Spill-Out in QM/MM Calculations on Excited States with Simple Pseudopotentials. Journal of Chemical Theory and Computation, 2020, 16, 1373-1381.	2.3	29
105	A Theoretical Study of the Reaction between CH3S(OH)CH3and O2â€. Journal of Physical Chemistry A, 2004, 108, 8659-8671.	1.1	28
106	Molecular design opportunities presented by solventâ€exposed regions of target proteins. Medicinal Research Reviews, 2019, 39, 2194-2238.	5.0	28
107	Virtual Screening Models for Prediction of HIV-1 RT Associated RNase H Inhibition. PLoS ONE, 2013, 8, e73478.	1.1	28
108	Association Dynamics and Linear and Nonlinear Optical Properties of an <i>N</i> -Acetylaladanamide Probe in a POPC Membrane. Journal of the American Chemical Society, 2013, 135, 13590-13597.	6.6	27

#	Article	IF	CITATIONS
109	Transition-State Docking of Flunitrazepam and Progesterone in Cytochrome P450. Journal of Chemical Theory and Computation, 2008, 4, 673-681.	2.3	26
110	Nonpolar Solvation Free Energies of Proteinâ^'Ligand Complexes. Journal of Chemical Theory and Computation, 2010, 6, 3558-3568.	2.3	26
111	Basis Set Recommendations for DFT Calculations of Gas-Phase Optical Rotation at Different Wavelengths. Journal of Chemical Theory and Computation, 2012, 8, 4425-4433.	2.3	26
112	Computational Approach for Studying Optical Properties of DNA Systems in Solution. Journal of Chemical Theory and Computation, 2016, 12, 5050-5057.	2.3	26
113	Importance of Accurate Structures for Quantum Chemistry Embedding Methods: Which Strategy Is Better?. Journal of Chemical Theory and Computation, 2018, 14, 4309-4319.	2.3	26
114	Polarizable Embedding Combined with the Algebraic Diagrammatic Construction: Tackling Excited States in Biomolecular Systems. Journal of Chemical Theory and Computation, 2018, 14, 4870-4883.	2.3	26
115	Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochemistry and Photobiology, 2021, 97, 243-269.	1.3	26
116	On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions. Physical Chemistry Chemical Physics, 2010, 12, 761-768.	1.3	25
117	Computational protocols for prediction of solute NMR relative chemical shifts. A case study of <scp>L</scp> â€tryptophan in aqueous solution. Journal of Computational Chemistry, 2011, 32, 2853-2864.	1.5	25
118	Promising two-photon probes for in vivo detection of \hat{I}^2 amyloid deposits. Chemical Communications, 2014, 50, 11694-11697.	2.2	25
119	Prediction and Rationalization of the pH Dependence of the Activity and Stability of Family 11 Xylanases. Biochemistry, 2007, 46, 13581-13592.	1.2	24
120	Density-Dependent Formulation of Dispersion–Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models. Journal of Chemical Theory and Computation, 2018, 14, 1671-1681.	2.3	24
121	Discovery of piperidine-substituted thiazolo[5,4-d]pyrimidine derivatives as potent and orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitors. Communications Chemistry, 2019, 2,	2.0	24
122	Effect of chromophore encapsulation on linear and nonlinear optical properties: the case of "miniSOGâ€; a protein-encased flavin. Physical Chemistry Chemical Physics, 2014, 16, 9950.	1.3	23
123	One- and Two-Photon Absorption of a Spiropyran–Merocyanine System: Experimental and Theoretical Studies. Journal of Physical Chemistry B, 2015, 119, 1515-1522.	1.2	23
124	Open-ended response theory with polarizable embedding: multiphoton absorption in biomolecular systems. Physical Chemistry Chemical Physics, 2016, 18, 28339-28352.	1.3	23
125	Solvent effects on the electronic absorption spectrum of camphor using continuum, discrete or explicit approaches. Chemical Physics Letters, 2010, 484, 185-191.	1.2	22
126	Revealing Spectral Features in Two-Photon Absorption Spectrum of Hoechst 33342: A Combined Experimental and Quantum-Chemical Study. Journal of Physical Chemistry B, 2013, 117, 12013-12019.	1.2	22

#	Article	IF	CITATIONS
127	Low-voltage organic phototransistors based on naphthyl end-capped oligothiophene nanofibers. Organic Electronics, 2014, 15, 1273-1281.	1.4	22
128	Multiscale Modeling of the Active Site of [Fe] Hydrogenase: The H ₂ Binding Site in Open and Closed Protein Conformations. Angewandte Chemie - International Edition, 2015, 54, 6246-6250.	7.2	22
129	A virtual vibrational self-consistent-field method for efficient calculation of molecular vibrational partition functions and thermal effects on molecular properties. Journal of Chemical Physics, 2008, 128, 174106.	1.2	21
130	Estimates of ligand-binding affinities supported by quantum mechanical methods. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 21-37.	2.2	21
131	Approximate Inclusion of Triple Excitations in Combined Coupled Cluster/Molecular Mechanics: Calculations of Electronic Excitation Energies in Solution for Acrolein, Water, Formamide, and N-Methylacetamide. Journal of Chemical Theory and Computation, 2010, 6, 839-850.	2.3	21
132	Theoretical ⁵⁷ Fe Mössbauer spectroscopy: isomer shifts of [Fe]-hydrogenase intermediates. Physical Chemistry Chemical Physics, 2014, 16, 4853-4863.	1.3	21
133	The Effect of Solvation on the Mean Excitation Energy of Glycine. Journal of Physical Chemistry Letters, 2010, 1, 242-245.	2.1	20
134	Density Functional Theory/Molecular Mechanics Approach for Electronic <i>g</i> -Tensors of Solvated Molecules. Journal of Physical Chemistry B, 2011, 115, 4350-4358.	1.2	20
135	Experimental and computational study of solvent effects on one- and two-photon absorption spectra of chlorinated harmines. Physical Chemistry Chemical Physics, 2015, 17, 12090-12099.	1.3	20
136	Polarizable Density Embedding Coupled Cluster Method. Journal of Chemical Theory and Computation, 2018, 14, 1351-1360.	2.3	20
137	The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Molecules, 2018, 23, 350.	1.7	20
138	CPPE: An Open-Source C++ and Python Library for Polarizable Embedding. Journal of Chemical Theory and Computation, 2019, 15, 6154-6163.	2.3	20
139	Discovery of a Potent Adenine–Benzyltriazolo–Pleuromutilin Conjugate with Pronounced Antibacterial Activity against MRSA. Journal of Medicinal Chemistry, 2020, 63, 15693-15708.	2.9	20
140	The electronic spectrum of the micro-solvated alanine zwitterion calculated using the combined coupled cluster/molecular mechanics method. Chemical Physics Letters, 2006, 429, 430-435.	1.2	19
141	Encapsulation Influence on EPR Parameters of Spin-Labels: 2,2,6,6-Tetramethyl-4-methoxypiperidine-1-oxyl in Cucurbit[8]uril. Journal of Chemical Theory and Computation, 2012, 8, 257-263.	2.3	19
142	Lanczos-driven coupled–cluster damped linear response theory for molecules in polarizable environments. Journal of Chemical Physics, 2014, 141, 244107.	1.2	19
143	Self-Aggregation and Optical Absorption of Stilbazolium Merocyanine in Chloroform. Journal of Physical Chemistry B, 2014, 118, 1715-1725.	1.2	19
144	Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes. Sensors, 2016, 16, 1173.	2.1	19

#	Article	IF	CITATIONS
145	Embedding beyond electrostatics—The role of wave function confinement. Journal of Chemical Physics, 2016, 145, 104102.	1.2	19
146	Substituted 9-Diethylaminobenzo[<i>a</i>]phenoxazin-5-ones (Nile Red Analogues): Synthesis and Photophysical Properties. Journal of Organic Chemistry, 2021, 86, 1471-1488.	1.7	19
147	A coupled cluster study of the oriented circular dichroism of the n→πâ^— electronic transition in cyclopropanone and natural optical active related structures. Chemical Physics Letters, 2004, 391, 259-266.	1.2	18
148	Uptake of Phenol on Aerosol Particlesâ€. Journal of Physical Chemistry A, 2006, 110, 660-670.	1.1	18
149	Vibrational and thermal effects on the dipole polarizability of methane and carbon tetrachloride from vibrational structure calculations. Journal of Chemical Physics, 2007, 127, 154315.	1.2	18
150	Density Functional Restricted–Unrestricted/Molecular Mechanics Theory for Hyperfine Coupling Constants of Molecules in Solution. Journal of Chemical Theory and Computation, 2011, 7, 3261-3271.	2.3	18
151	Photoabsorption of Acridine Yellow and Proflavin Bound to Human Serum Albumin Studied by Means of Quantum Mechanics/Molecular Dynamics. Journal of Physical Chemistry B, 2013, 117, 2069-2080.	1.2	18
152	Automated Fragmentation Polarizable Embedding Density Functional Theory (PE-DFT) Calculations of Nuclear Magnetic Resonance (NMR) Shielding Constants of Proteins with Application to Chemical Shift Predictions. Journal of Chemical Theory and Computation, 2017, 13, 525-536.	2.3	18
153	Structure-guided approach identifies a novel class of HIV-1 ribonuclease H inhibitors: binding mode insights through magnesium complexation and site-directed mutagenesis studies. MedChemComm, 2018, 9, 562-575.	3.5	18
154	Vibrational Contributions to Indirect Spinâ^'Spin Coupling Constants Calculated via Variational Anharmonic Approaches. Journal of Physical Chemistry A, 2008, 112, 8436-8445.	1.1	17
155	Fluorescence and phosphorescence of acetone in neat liquid and aqueous solution studied by QM/MM and PCM approaches. International Journal of Quantum Chemistry, 2011, 111, 1511-1520.	1.0	17
156	Binding free energy based structural dynamics analysis of HIV-1 RT RNase H–inhibitor complexes. Integrative Biology (United Kingdom), 2014, 6, 1010-1022.	0.6	17
157	Design of new fluorescent cholesterol and ergosterol analogs: Insights from theory. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2188-2199.	1.4	17
158	Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone. Journal of Chemical Physics, 2015, 142, 034119.	1.2	17
159	Electronic Energy Transfer in Polarizable Heterogeneous Environments: A Systematic Investigation of Different Quantum Chemical Approaches. Journal of Chemical Theory and Computation, 2015, 11, 4283-4293.	2.3	17
160	Computational Analysis of Sterol Ligand Specificity of the Niemann Pick C2 Protein. Biochemistry, 2016, 55, 5165-5179.	1.2	17
161	Inhibitor Ranking through QM Based Chelation Calculations for Virtual Screening of HIV-1 RNase H Inhibition. PLoS ONE, 2014, 9, e98659.	1.1	17
162	Solvent effects on the nitrogen NMR shielding and nuclear quadrupole coupling constants in 1-methyltriazoles. Chemical Physics Letters, 2008, 460, 129-136.	1.2	16

#	Article	IF	CITATIONS
163	A quantum mechanics/molecular dynamics study of electric field gradient fluctuations in the liquid phase. The case of Na ⁺ in aqueous solution. Physical Chemistry Chemical Physics, 2013, 15, 1621-1631.	1.3	16
164	Nonlinear Optical Effects Induced by Nanoparticles in Symmetric Molecules. Journal of Physical Chemistry C, 2010, 114, 20870-20876.	1.5	15
165	Synthesis, biological evaluation and molecular modelling studies of 4-anilinoquinazoline derivatives as protein kinase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 1909-1915.	1.4	15
166	Enhancement of Internal Motions of Lysozyme through Interaction with Gold Nanoclusters and its Optical Imaging. Journal of Physical Chemistry C, 2015, 119, 653-664.	1.5	15
167	One- and two-photon solvatochromism of the fluorescent dye Nile Red and its CF3, F and Br-substituted analogues. Photochemical and Photobiological Sciences, 2020, 19, 1382-1391.	1.6	15
168	How Far Does a Receptor Influence Vibrational Properties of an Odorant?. PLoS ONE, 2016, 11, e0152345.	1.1	15
169	Molecular electric properties of liquid water calculated using the combined coupled cluster/molecular mechanics method. Computational and Theoretical Chemistry, 2003, 632, 207-225.	1.5	14
170	NMR Spin–Spin Coupling Constants in Polymethine Dyes as Polarity Indicators. Chemistry - A European Journal, 2012, 18, 11677-11684.	1.7	14
171	Relativistic Polarizable Embedding. Journal of Chemical Theory and Computation, 2017, 13, 2870-2880.	2.3	14
172	Absorption Spectra of FAD Embedded in Cryptochromes. Journal of Physical Chemistry Letters, 2018, 9, 3618-3623.	2.1	14
173	Design, synthesis, and biologic evaluation of novel galloyl derivatives as <scp>HIV</scp> â€ <scp>RN</scp> ase H inhibitors. Chemical Biology and Drug Design, 2019, 93, 582-589.	1.5	14
174	Conformational Dependence of Isotropic Polarizabilities. Journal of Chemical Theory and Computation, 2011, 7, 1404-1414.	2.3	13
175	Polarizable embedding based on multiconfigurational methods: Current developments and the road ahead. International Journal of Quantum Chemistry, 2014, 114, 1102-1107.	1.0	13
176	pH-Induced Modulation of One- and Two-Photon Absorption Properties in a Naphthalene-Based Molecular Probe. Journal of Chemical Theory and Computation, 2013, 9, 3660-3669.	2.3	12
177	A Unified Framework for the Polarizable Embedding and Continuum Methods Within Multiconfigurational Self-consistent Field Theory. Advances in Quantum Chemistry, 2013, 66, 195-238.	0.4	12
178	Chelation-Induced Quenching of Two-Photon Absorption of Azacrown Ether Substituted Distyryl Benzene for Metal Ion Sensing. Journal of Chemical Theory and Computation, 2014, 10, 778-788.	2.3	12
179	Assessing frequency-dependent site polarisabilities in linear response polarisable embedding. Molecular Physics, 2017, 115, 39-47.	0.8	12
180	An averaged polarizable potential for multiscale modeling in phospholipid membranes. Journal of Computational Chemistry, 2017, 38, 601-611.	1.5	12

#	Article	IF	CITATIONS
181	Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach. Journal of Chemical Theory and Computation, 2017, 13, 4442-4451.	2.3	12
182	A quantum-mechanical perspective on linear response theory within polarizable embedding. Journal of Chemical Physics, 2017, 146, 234101.	1.2	12
183	Modeling of Magnetic Circular Dichroism and UV/Vis Absorption Spectra Using Fluctuating Charges or Polarizable Embedding within a Resonant-Convergent Response Theory Formalism. Journal of Chemical Theory and Computation, 2018, 14, 6391-6404.	2.3	12
184	A theoretical investigation of gas phase NO3 initiated nitration of p-cresol. Chemical Physics, 2011, 389, 39-46.	0.9	11
185	Computational assignment of redox states to Coulomb blockade diamonds. Physical Chemistry Chemical Physics, 2014, 16, 17473-17478.	1.3	11
186	Computational Approach to Evaluation of Optical Properties of Membrane Probes. Journal of Chemical Theory and Computation, 2017, 13, 719-726.	2.3	11
187	Structural design of intrinsically fluorescent oxysterols. Chemistry and Physics of Lipids, 2018, 212, 26-34.	1.5	11
188	Binding and intracellular transport of 25-hydroxycholesterol by Niemann-Pick C2 protein. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183063.	1.4	11
189	βâ€Actin Peptideâ€Based Inhibitors of Histidine Methyltransferase SETD3. ChemMedChem, 2021, 16, 2695-2702	.1.6	11
190	Nitrogen <i>K</i> -Edge X-ray Absorption Spectra of Ammonium and Ammonia in Water Solution: Assessing the Performance of Polarizable Embedding Coupled Cluster Methods. Journal of Physical Chemistry Letters, 2021, 12, 8865-8871.	2.1	11
191	Identifying the Hamiltonian structure in linear response theory. Journal of Chemical Physics, 2014, 140, 224103.	1.2	10
192	Polarizable Density Embedding for Large Biomolecular Systems. Journal of Chemical Theory and Computation, 2020, 16, 5999-6006.	2.3	10
193	Benchmarking the multipole shielding polarizability/reaction field approach to solvation against QM/MM: Applications to the shielding constants of N-methylacetamide. Journal of Chemical Physics, 2011, 134, 044514.	1.2	9
194	The Second-Order Polarization Propagator Approximation (SOPPA) method coupled to the polarizable continuum model. Computational and Theoretical Chemistry, 2014, 1040-1041, 54-60.	1.1	9
195	Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding. Journal of Organic Chemistry, 2017, 82, 2123-2128.	1.7	9
196	Rational Design of Nile Red Analogs for Sensing in Membranes. Journal of Physical Chemistry B, 2019, 123, 10424-10432.	1.2	9
197	Mechanistic Insight into Lipid Binding to Yeast Niemann Pick Type C2 Protein. Biochemistry, 2020, 59, 4407-4420.	1.2	9
198	Binding Mechanism and Magnetic Properties of a Multifunctional Spin Label for Targeted EPR Imaging of Amyloid Proteins: Insight from Atomistic Simulations and First-Principles Calculations. Journal of Chemical Theory and Computation, 2012, 8, 4766-4774.	2.3	8

#	Article	IF	CITATIONS
199	Simulations of Light Absorption of Carbon Particles in Nanoaerosol Clusters. Journal of Physical Chemistry A, 2014, 118, 1879-1886.	1.1	8
200	Modeling magnetic circular dichroism within the polarizable embedding approach. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	8
201	Membrane organization and intracellular transport of a fluorescent analogue of 27-hydroxycholesterol. Chemistry and Physics of Lipids, 2020, 233, 105004.	1.5	8
202	Direct observation of nystatin binding to the plasma membrane of living cells. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183528.	1.4	8
203	Determination of rate constants for the uptake process involving SO2 and an aerosol particle. A quantum mechanics/molecular mechanics and quantum statistical investigation. Chemical Physics, 2008, 348, 21-30.	0.9	7
204	Efficient Open-Source Implementations of Linear-Scaling Polarizable Embedding: Use Octrees to Save the Trees. Journal of Chemical Theory and Computation, 2021, 17, 3445-3454.	2.3	7
205	Solvatochromic shifts vs nanosolvation patterns: Uracil in water as a test case. Computational and Theoretical Chemistry, 2011, 974, 109-116.	1.1	6
206	Coordinationâ€Driven Switching of a Preorganized and Cooperative Calix[4]pyrrole Receptor. Chemistry - A European Journal, 2013, 19, 2768-2775.	1.7	6
207	Dual mechanism of HIV-1 integrase and RNase H inhibition by diketo derivatives – a computational study. RSC Advances, 2014, 4, 38672-38681.	1.7	6
208	Biochemical and Computational Analysis of the Substrate Specificities of Cfr and RlmN Methyltransferases. PLoS ONE, 2015, 10, e0145655.	1.1	6
209	Multipole moments for embedding potentials: Exploring different atomic allocation algorithms. Journal of Computational Chemistry, 2016, 37, 1887-1896.	1.5	6
210	Rational design of novel fluorescent analogues of cholesterol: a "step-by-step―computational study. Physical Chemistry Chemical Physics, 2019, 21, 15487-15503.	1.3	6
211	Computational Modeling Explains the Multi Sterol Ligand Specificity of the N-Terminal Domain of Niemann–Pick C1-Like 1 Protein. ACS Omega, 2019, 4, 20894-20904.	1.6	6
212	Preparation of organocobalt(<scp>iii</scp>) complexes <i>via</i> O ₂ activation. Dalton Transactions, 2021, 50, 4819-4829.	1.6	6
213	Harmonic Infrared and Raman Spectra in Molecular Environments Using the Polarizable Embedding Model. Journal of Chemical Theory and Computation, 2021, 17, 3599-3617.	2.3	6
214	Fast Approximate but Accurate QM/MM Interactions for Polarizable Embedding. Journal of Chemical Theory and Computation, 2022, 18, 344-356.	2.3	6
215	A comparative study of binding affinities for 6,7-dimethoxy-4-pyrrolidylquinazolines as phosphodiesterase 10A inhibitors using the linear interaction energy method. Journal of Molecular Graphics and Modelling, 2015, 61, 44-52.	1.3	5
216	Ultramild Proteinâ€Mediated Click Chemistry Creates Efficient Oligonucleotide Probes for Targeting and Detecting Nucleic Acids. ChemBioChem, 2015, 16, 1163-1167.	1.3	5

#	Article	IF	CITATIONS
217	Computational Characterization of a Cholesterol-Based Molecular Rotor in Lipid Membranes. Journal of Physical Chemistry B, 2019, 123, 7313-7326.	1.2	5
218	Hole Hopping through Cytochrome P450. Journal of Physical Chemistry B, 2020, 124, 3065-3073.	1.2	5
219	Modelling spectroscopic properties of large molecular systems. The combined Density Functional Theory/Molecular Mechanics approach. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 135-158.	0.1	4
220	The coupling constant polarizability and hyperpolarizabilty of ¹ <i>J</i> (NH) in <i>N</i> â€methylacetamide, and its application for the multipole spin–spin coupling constant polarizability/reaction field approach to solvation. Journal of Computational Chemistry, 2011, 32, 3168-3174.	1.5	4
221	How Crucial Are Finite Temperature and Solvent Effects on Structure and Absorption Spectra of Si ₁₀ ?. Journal of Physical Chemistry C, 2012, 116, 26618-26624.	1.5	4
222	EPR spin Hamiltonian parameters of encapsulated spin-labels: impact of the hydrogen bonding topology. Physical Chemistry Chemical Physics, 2013, 15, 2427.	1.3	4
223	Binding affinity models for Falcipain inhibition based on the Linear Interaction Energy method. Journal of Molecular Graphics and Modelling, 2016, 70, 236-245.	1.3	4
224	Optimization and transferability of nonâ€electrostatic repulsion in the polarizable density embedding model. Journal of Computational Chemistry, 2017, 38, 2108-2117.	1.5	4
225	One-Photon Absorption Properties from a Hybrid Polarizable Density Embedding/Complex Polarization Propagator Approach for Polarizable Solutions. Journal of Chemical Theory and Computation, 2018, 14, 2145-2154.	2.3	4
226	Modeling the Sterol-Binding Domain of Aster-A Provides Insight into Its Multiligand Specificity. Journal of Chemical Information and Modeling, 2020, 60, 2268-2281.	2.5	4
227	Modeling One―and Twoâ€Photon Excitation of 4′â€(Hydroxymethyl)â€4,5′,8â€trimethylpsoralen in Comp DNA: Solving Electron Spillâ€Out Problems in Polarizable QM/MM Calculations. Advanced Theory and Simulations, 2021, 4, 2000294.	lex with 1.3	4
228	Photophysical and Structural Characterization of Intrinsically Fluorescent Sterol Aggregates. Journal of Physical Chemistry B, 2021, 125, 5838-5852.	1.2	4
229	Gauge-origin independent magnetizabilities from hybrid quantum mechanics/molecular mechanics models: Theory and applications to liquid water. Chemical Physics Letters, 2007, 442, 322-328.	1.2	3
230	Basis set error estimation for DFT calculations of electronic gâ€ŧensors for transition metal complexes. Journal of Computational Chemistry, 2014, 35, 1809-1814.	1.5	3
231	The chemistry of Coulomb blockade diamonds for 1,4-diamino-benzene. Chemical Physics, 2015, 459, 40-44.	0.9	3
232	Polarizable Embedding as a Tool to Address Light-Responsive Biological Systems. Challenges and Advances in Computational Chemistry and Physics, 2021, , 143-195.	0.6	3
233	Importance of Ile71 in β-actin on histidine methyltransferase SETD3 catalysis. Organic and Biomolecular Chemistry, 2022, 20, 1723-1730.	1.5	3
234	Mechanism behind Polysorbates' Inhibitory Effect on P-Glycoprotein. Molecular Pharmaceutics, 2022, ,	2.3	3

#	Article	IF	CITATIONS
235	Parallelization of the polarizable embedding scheme for higher-order response functions. Molecular Physics, 2012, 110, 2579-2586.	0.8	2
236	Comparison between Theoretically and Experimentally Determined Electronic Properties: Applications to Two-Photon Singlet Oxygen Sensitizers. Journal of Physical Chemistry A, 2015, 119, 1906-1916.	1.1	2
237	Photophysical investigation of two emissive nucleosides exhibiting gigantic stokes shifts. Photochemical and Photobiological Sciences, 2019, 18, 1858-1865.	1.6	2
238	Computational Characterization of Novel Malononitrile Variants of Laurdan with Improved Photophysical Properties for Sensing in Membranes. Journal of Physical Chemistry B, 2020, 124, 9526-9534.	1.2	2
239	Computational and photophysical characterization of a Laurdan malononitrile derivative. Physical Chemistry Chemical Physics, 2021, 23, 9139-9146.	1.3	2
240	Linear Response Theory in Connection to Density Functional Theory/Molecular Dynamics and Coupled Cluster/Molecular Dynamics Methods. Challenges and Advances in Computational Chemistry and Physics, 2008, , 349-380.	0.6	2
241	Recognition of Dimethylarginine Analogues by Tandem Tudor Domain Protein Spindlin1. Molecules, 2022, 27, 983.	1.7	2
242	Relaxation Dynamics of the Triazene Compound Berenil in DNA-Minor-Groove Confinement after Photoexcitation. Journal of Chemical Theory and Computation, 2020, 16, 5203-5211.	2.3	1
243	Modeling environmental effects in two-photon circular dichroism calculations. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	1
244	THE (HYPER)POLARIZABILITIES OF LIQUID WATER MODELLED USING COUPLED CLUSTER/MOLECULAR MECHANICS RESPONSE THEORY METHODS. , 2006, , 215-281.		0
245	Combining polarizable embedding with the Frenkel exciton model: applications to absorption spectra with overlapping solute–solvent bands. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	0
246	Computational analysis of altered one- and two-photon CD of sterols inside a protein binding pocket. Theoretical Chemistry Accounts, 2022, 141, 1.	0.5	0