Hiroshi Inoue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092214/publications.pdf Version: 2024-02-01

HIDOSHI MOUE

#	Article	IF	CITATIONS
1	Four features of temporal patterns characterize similarity among individuals and molecules by glucose ingestion in humans. Npj Systems Biology and Applications, 2022, 8, 6.	3.0	5
2	Diet intake control is indispensable for the gluconeogenic response to sodium–glucose cotransporter 2 inhibition in male mice. Journal of Diabetes Investigation, 2021, 12, 35-47.	2.4	5
3	Hepatocellular carcinoma development in diabetic patients: a nationwide survey in Japan. Journal of Gastroenterology, 2021, 56, 261-273.	5.1	28
4	Trans-omic analysis reveals obesity-associated dysregulation of inter-organ metabolic cycles between the liver and skeletal muscle. IScience, 2021, 24, 102217.	4.1	21
5	Flexible herbivory of the euryhaline mysid <i>Neomysis awatschensis</i> in the microtidal Yura River estuary, central Japan. Plankton and Benthos Research, 2021, 16, 278-291.	0.6	0
6	Transomics analysis reveals allosteric and gene regulation axes for altered hepatic glucose-responsive metabolism in obesity. Science Signaling, 2020, 13, .	3.6	21
7	Hollow fiber-combined glucose-responsive gel technology as an in vivo electronics-free insulin delivery system. Communications Biology, 2020, 3, 313.	4.4	12
8	GCN2 regulates pancreatic \hat{l}^2 cell mass by sensing intracellular amino acid levels. JCI Insight, 2020, 5, .	5.0	13
9	Hepatic Gluconeogenic Response to Single and Long-Term SGLT2 Inhibition in Lean/Obese Male Hepatic G6pc-Reporter Mice. Endocrinology, 2019, 160, 2811-2824.	2.8	12
10	MAPK Erk5 in Leptin Receptor‒Expressing Neurons Controls Body Weight and Systemic Energy Homeostasis in Female Mice. Endocrinology, 2019, 160, 2837-2848.	2.8	10
11	Logical design of oral glucose ingestion pattern minimizing blood glucose in humans. Npj Systems Biology and Applications, 2019, 5, 31.	3.0	10
12	Nicotinic alphaâ€7 acetylcholine receptor deficiency exacerbates hepatic inflammation and fibrosis in a mouse model of nonâ€alcoholic steatohepatitis. Journal of Diabetes Investigation, 2019, 10, 659-666.	2.4	26
13	Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein. Nature Communications, 2018, 9, 30.	12.8	66
14	PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes. Scientific Reports, 2018, 8, 14290.	3.3	15
15	Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut microbiota-dependent manner. Biochemical and Biophysical Research Communications, 2018, 501, 955-961.	2.1	56
16	Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS ONE, 2018, 13, e0202083.	2.5	45
17	Docosahexaenoic Acid Reduces Palmitic Acid-Induced Endoplasmic Reticulum Stress in Pancreatic Î' Cells. Kobe Journal of Medical Sciences, 2018, 64, E43-E55.	0.2	7
18	PDGFRÎ ² Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity. Diabetes, 2017, 66, 1008-1021.	0.6	66

Hiroshi Inoue

#	Article	IF	CITATIONS
19	Dietary Mung Bean Protein Reduces Hepatic Steatosis, Fibrosis, and Inflammation in Male Mice with Diet-Induced, Nonalcoholic Fatty Liver Disease. Journal of Nutrition, 2017, 147, 52-60.	2.9	37
20	Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor. Cell Reports, 2016, 14, 2362-2374.	6.4	67
21	Eicosapentaenoic acid ameliorates hyperglycemia in high-fat diet-sensitive diabetes mice in conjunction with restoration of hypoadiponectinemia. Nutrition and Diabetes, 2016, 6, e213-e213.	3.2	4
22	The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch. Nature Communications, 2016, 7, 13147.	12.8	28
23	Central insulin-mediated regulation of hepatic glucose production [Review]. Endocrine Journal, 2016, 63, 1-7.	1.6	34
24	Hepatocyte βâ€Klotho regulates lipid homeostasis but not body weight in mice. FASEB Journal, 2016, 30, 849-862.	0.5	17
25	Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity. PLoS ONE, 2015, 10, e0130757.	2.5	17
26	Growth arrest and DNA damageâ€inducible 34 regulates liver regeneration in hepatic steatosis in mice. Hepatology, 2015, 61, 1343-1356.	7.3	41
27	Paternal allelic mutation at the <i>Kcnq1</i> locus reduces pancreatic β-cell mass by epigenetic modification of <i>Cdkn1c</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8332-8337.	7.1	49
28	Hypothalamic Orexin Prevents Hepatic Insulin Resistance via Daily Bidirectional Regulation of Autonomic Nervous System in Mice. Diabetes, 2015, 64, 459-470.	0.6	58
29	Molecular basis of brain-mediated regulation of hepatic glucose metabolism. Diabetology International, 2014, 5, 158-164.	1.4	Ο
30	ER stress-inducible ATF3 suppresses BMP2-induced ALP expression and activation in MC3T3-E1 cells. Biochemical and Biophysical Research Communications, 2014, 443, 333-338.	2.1	24
31	Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis. Nature Communications, 2014, 5, 4982.	12.8	156
32	p62/SQSTM1 Plays a Protective Role in Oxidative Injury of Steatotic Liver in a Mouse Hepatectomy Model. Antioxidants and Redox Signaling, 2014, 21, 2515-2530.	5.4	19
33	Regulation of glucose metabolism by central insulin action. Biomedical Reviews, 2014, 22, 31.	0.6	1
34	The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications, 2013, 4, 1829.	12.8	1,089
35	Histidine Augments the Suppression of Hepatic Glucose Production by Central Insulin Action. Diabetes, 2013, 62, 2266-2277.	0.6	61
36	Endoplasmic Reticulum Stress Inhibits STAT3-Dependent Suppression of Hepatic Gluconeogenesis via Dephosphorylation and Deacetylation. Diabetes, 2012, 61, 61-73.	0.6	83

HIROSHI INOUE

#	Article	IF	CITATIONS
37	Diabetic modifier QTL, <i>Dbm4</i> , affecting elevated fasting blood glucose concentrations in congenic mice. Genes and Genetic Systems, 2012, 87, 341-346.	0.7	1
38	CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nature Medicine, 2012, 18, 612-617.	30.7	65
39	CCR5 Plays a Critical Role in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Both Macrophage Recruitment and M1/M2 Status. Diabetes, 2012, 61, 1680-1690.	0.6	235
40	Role of central insulin action in the regulation of hepatic glucose metabolism. Acta Hepatologica Japonica, 2012, 53, 329-335.	0.1	0
41	Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1. PLoS ONE, 2011, 6, e23238.	2.5	50
42	Signal transducer and activator of transcription 3 upregulates interleukinâ€8 expression at the level of transcription in human melanoma cells. Experimental Dermatology, 2010, 19, e50-5.	2.9	15
43	CRTC3 links catecholamine signalling to energy balance. Nature, 2010, 468, 933-939.	27.8	128
44	Role of KLF15 in Regulation of Hepatic Gluconeogenesis and Metformin Action. Diabetes, 2010, 59, 1608-1615.	0.6	100
45	Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3087-3092.	7.1	137
46	Ablation of C/EBPβ alleviates ER stress and pancreatic β cell failure through the GRP78 chaperone in mice. Journal of Clinical Investigation, 2010, 120, 115-126.	8.2	84
47	Role of the E3 ubiquitin ligase gene related to anergy in lymphocytes in glucose and lipid metabolism in the liver. Journal of Molecular Endocrinology, 2009, 42, 161-169.	2.5	11
48	The survival pathways phosphatidylinositol-3 kinase (PI3-K)/phosphoinositide-dependent protein kinase 1 (PDK1)/Akt modulate liver regeneration through hepatocyte size rather than proliferation. Hepatology, 2009, 49, 204-214.	7.3	92
49	Reply to: "Mouse fertility is not dependent on the CREB coactivator Crtc1― Nature Medicine, 2009, 15, 991-991.	30.7	0
50	The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nature Medicine, 2008, 14, 1112-1117.	30.7	185
51	Dok1 mediates high-fat diet–induced adipocyte hypertrophy and obesity through modulation of PPAR-γ phosphorylation. Nature Medicine, 2008, 14, 188-193.	30.7	100
52	Identification of de novo STAT3 target gene in liver regeneration. Hepatology Research, 2008, 38, 374-384.	3.4	0
53	Restoration of Glucokinase Expression in the Liver Normalizes Postprandial Glucose Disposal in Mice With Hepatic Deficiency of PDK1. Diabetes, 2007, 56, 1000-1009.	0.6	36
54	Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metabolism, 2006, 3, 267-275.	16.2	261

Hiroshi Inoue

#	Article	IF	CITATIONS
55	Compensatory recovery of liver mass by Akt-mediated hepatocellular hypertrophy in liver-specific STAT3-deficient mice. Journal of Hepatology, 2005, 43, 799-807.	3.7	92
56	Role of Krüppel-like factor 15 in PEPCK gene expression in the liver. Biochemical and Biophysical Research Communications, 2005, 327, 920-926.	2.1	64
57	PKCλ regulates glucose-induced insulin secretion through modulation of gene expression in pancreatic β cells. Journal of Clinical Investigation, 2005, 115, 138-145.	8.2	57
58	Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nature Medicine, 2004, 10, 168-174.	30.7	328
59	PKCλ in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. Journal of Clinical Investigation, 2003, 112, 935-944.	8.2	89
60	Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. Journal of Clinical Investigation, 2003, 112, 989-998.	8.2	201
61	PKCλ in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. Journal of Clinical Investigation, 2003, 112, 935-944.	8.2	146
62	Role of the Insulin Receptor Substrate 1 and Phosphatidylinositol 3-Kinase Signaling Pathway in Insulin-Induced Expression of Sterol Regulatory Element Binding Protein 1c and Glucokinase Genes in Rat Hepatocytes. Diabetes, 2002, 51, 1672-1680.	0.6	120
63	Food availability and reproductive performance in the predator,Agriosphodrus dohrni signoret (Hemiptera: Reduviidae): Is its population food-limited in the field?. Researches on Population Ecology, 1988, 30, 95-105.	0.9	3
64	Habitat use by the refuging predator,Agriosphodrus dohrni Signoret I. Nymphal microhabitat suitability and density dependent microhabitat selection by ovipositing females. Researches on Population Ecology, 1986, 28, 321-332.	0.9	3
65	Studies on the population dynamics of the assassin bug,Agriosphodrus dohrni Signoret, in relation to resting site utilization. Researches on Population Ecology, 1986, 28, 27-38.	0.9	5
66	Group predatory behavior by the assassin bugAgriosphodrus dohrni Signoret (Hemiptera: Reduviidae). Researches on Population Ecology, 1985, 27, 255-264.	0.9	7
67	Nymphal cannibalism in relation to oviposition behavior of adults in the assassin bug,Agriosphodrus dohrni signoret. Researches on Population Ecology, 1983, 25, 189-197.	0.9	10
68	Studies on the mode of foraging of the gregarious assassin bugAgriosphodrus dohrni Signoret. Researches on Population Ecology, 1982, 24, 211-223.	0.9	7