
C Robert Dennis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6092071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the hexacyanoferrate(III) ion in an oxalate buffer medium. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132, 599-615.	1.7	11
2	A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the octacyanotungstate(V) and the octacyanomolybdate(V) ions in an acidic oxalate buffer medium. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 615-627.	1.7	2
3	Kinetic advantage of inner sphere electron transfer reactions of copper(III,II) peptide complexes with cyano complexes of iron, molybdenum and tungsten. Transition Metal Chemistry, 2020, 45, 147-157.	1.4	4
4	A Kinetic Study of the Electron-Transfer Reactions of Nickel(III,II) Tripeptide Complexes with Cyano Complexes of Molybdenum, Tungsten, and Iron. Inorganic Chemistry, 2020, 59, 11695-11703.	4.0	7
5	The oxidation of acetaldehyde by the octacyanomolybdate(V) ion in an aqueous alkaline medium. Transition Metal Chemistry, 2019, 44, 161-165.	1.4	4
6	Nucleophilic ligand substitution in triply deprotonated tetrapeptide complexes of copper(II) and nickel(II) with 1,10-phenanthroline and 2,2-bipyridine. Transition Metal Chemistry, 2018, 43, 387-395.	1.4	2
7	Extended BSc Programme: Performance of students in Chemistry. South African Journal of Science, 2017, 113, 4.	0.7	0
8	Influence of the decomposition of Tris(2,2-bipyridine)iron(II) and (III) on the reduction of Tris(2,2-bipyridine)iron(III) by hydrazine in aqueous acidic medium: a kinetic study. Transition Metal Chemistry, 2016, 41, 25-34.	1.4	1
9	Proton-transfer reactions of copper(II)- and nickel(II) tetrapeptide complexes with bulky α-carbon substituents. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 27-38.	1.7	6
10	A kinetic study of the oxidation of formaldehyde by the octacyanomolybdate(V) ion in aqueous alkaline medium. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 1-7.	1.7	6
11	A kinetic study of the reduction of the octacyanomolybdate(V) ion by the hydroxide ion. Reaction Kinetics, Mechanisms and Catalysis, 2009, 99, 63.	1.7	0
12	Synthesis of cesium octacyanomolybdate(V)- and cesium octacyanotungstate(V) dihydrate: a more successful method. Transition Metal Chemistry, 1992, 17, 471-473.	1.4	38
13	Oxidation of hydrazine and methyl-substituted hydrazines by the cyano complexes of iron(III), molybdenum(V) and tungsten(V). A kinetic study. Inorganic Chemistry, 1987, 26, 270-272.	4.0	26