
Andrew R Coggan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6091844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide and skeletal muscle contractile function. Nitric Oxide - Biology and Chemistry, 2022, 122-123, 54-61.	1.2	10
2	Skeletal Muscle Contractile Function in Heart Failure With Reduced Ejection Fraction—A Focus on Nitric Oxide. Frontiers in Physiology, 2022, 13, .	1.3	2
3	Heart Failure With Reduced Ejection Fraction: "The Importance of Being Frailâ€: Circulation, 2022, 146, 91-93.	1.6	1
4	Beetroot supplementation in women enjoying exercise together (BEE SWEET): Rationale, design and methods. Contemporary Clinical Trials Communications, 2021, 21, 100693.	0.5	4
5	Gut Reaction: Habitual Dietary Nitrate Intake as a Modulator of Skeletal Muscle Contractile Function. Journal of Nutrition, 2021, 151, 1049-1050.	1.3	0
6	Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis. Journal of the International Society of Sports Nutrition, 2021, 18, 66.	1.7	22
7	Dose–Response Effect of Dietary Nitrate on Muscle Contractility and Blood Pressure in Older Subjects: A Pilot Study. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 591-598.	1.7	16
8	A Single Dose of Dietary Nitrate Increases Maximal Knee Extensor Angular Velocity and Power in Healthy Older Men and Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 1154-1160.	1.7	30
9	Dietary Nitrate Supplementation and Exercise-Related Performance. Nutrition Today, 2020, 55, 211-217.	0.6	5
10	Simultaneous Pharmacokinetic Analysis of Nitrate and its Reduced Metabolite, Nitrite, Following Ingestion of Inorganic Nitrate in a Mixed Patient Population. Pharmaceutical Research, 2020, 37, 235.	1.7	11
11	Cardiovascular Functional Changes in Chronic Kidney Disease: Integrative Physiology, Pathophysiology and Applications of Cardiopulmonary Exercise Testing. Frontiers in Physiology, 2020, 11, 572355.	1.3	18
12	Potential health effects of dietary nitrate supplementation in aging and chronic degenerative disease. Medical Hypotheses, 2020, 141, 109732.	0.8	6
13	Weight Loss Affects Intramyocardial Glucose Metabolism in Obese Humans. Circulation: Cardiovascular Imaging, 2019, 12, e009241.	1.3	4
14	[Reply to Notarius]. Journal of Cardiac Failure, 2019, 25, 223.	0.7	0
15	What Is in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes. International Journal of Sport Nutrition and Exercise Metabolism, 2019, 29, 345-349.	1.0	36
16	Dietary nitrate's effects on exercise performance in heart failure with reduced ejection fraction (HFrEF). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 735-740.	1.8	7
17	Dietary nitrate-induced increases in human muscle power: high versus low responders. Physiological Reports, 2018, 6, e13575.	0.7	46
18	Dietary Nitrate Increases VO2peak and Performance but Does Not Alter Ventilation or Efficiency in Patients With Heart Failure With Reduced Fiection Fraction, Journal of Cardiac Failure, 2018, 24, 65-73	0.7	38

#	Article	IF	CITATIONS
19	Bariatric Surgery–Induced Cardiac and Lipidomic Changes in Obesityâ€Related Heart Failure with Preserved Ejection Fraction. Obesity, 2018, 26, 284-290.	1.5	68
20	Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exercise and Sport Sciences Reviews, 2018, 46, 254-261.	1.6	52
21	Dietary Nitrate and Muscle Function in Humans. Medicine and Science in Sports and Exercise, 2018, 50, 874.	0.2	1
22	Measurement of nitrate and nitrite in biopsy-sized muscle samples using HPLC. Journal of Applied Physiology, 2018, 125, 1475-1481.	1.2	3
23	Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. Journal of Nuclear Cardiology, 2017, 24, 1226-1235.	1.4	27
24	Dietary Nitrate and Muscle Power with Aging. Medicine and Science in Sports and Exercise, 2017, 49, 1090.	0.2	2
25	Dietary Nitrate Reduces Ventilatory Demands and Increases VO2peak in Patients With Systolic Heart Failure. Medicine and Science in Sports and Exercise, 2016, 48, 257.	0.2	0
26	Effect of Ambrisentan on Exercise Capacity in Adult Patients After the Fontan Procedure. American Journal of Cardiology, 2016, 117, 1524-1532.	0.7	30
27	Increase in Maximal Cycling Power With Acute Dietary Nitrate Supplementation. International Journal of Sports Physiology and Performance, 2016, 11, 715-720.	1.1	54
28	Oximetric angiosome imaging in diabetic feet. Journal of Magnetic Resonance Imaging, 2016, 44, spcone-spcone.	1.9	0
29	Oximetric angiosome imaging in diabetic feet. Journal of Magnetic Resonance Imaging, 2016, 44, 940-946.	1.9	7
30	Dietary Nitrate and Skeletal Muscle Contractile Function in Heart Failure. Current Heart Failure Reports, 2016, 13, 158-165.	1.3	16
31	A Diet Rich in Medium-Chain Fatty Acids Improves Systolic Function and Alters the Lipidomic Profile in Patients With Type 2 Diabetes: A Pilot Study. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 504-512.	1.8	39
32	Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1510-H1516.	1.5	31
33	Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients With Heart Failure. Circulation: Heart Failure, 2015, 8, 914-920.	1.6	105
34	In vivo creatine kinase reaction kinetics at rest and stress in type II diabetic rat heart. Physiological Reports, 2015, 3, e12248.	0.7	10
35	Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide - Biology and Chemistry, 2015, 48, 16-21.	1.2	121
36	Noncontrast skeletal muscle oximetry. Magnetic Resonance in Medicine, 2014, 71, 318-325.	1.9	34

3

#	Article	IF	CITATIONS
37	A pilot study of regional perfusion and oxygenation in calf muscles of individuals with diabetes with a noninvasive measure. Journal of Vascular Surgery, 2014, 59, 419-426.	0.6	26
38	A "PET―area of interest: myocardial metabolism in human systolic heart failure. Heart Failure Reviews, 2013, 18, 567-574.	1.7	21
39	Impact of sex on the heart's metabolic and functional responses to diabetic therapies. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H1584-H1591.	1.5	67
40	Sex and Type 2 Diabetes: Obesityâ€Independent Effects on Left Ventricular Substrate Metabolism and Relaxation in Humans. Obesity, 2012, 20, 802-810.	1.5	71
41	Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. Journal of Nuclear Cardiology, 2011, 18, 421-429.	1.4	38
42	Assessment of myocardial triglyceride oxidation with PET and 11C-palmitate. Journal of Nuclear Cardiology, 2009, 16, 411-421.	1.4	25
43	Measurement of myocardial fatty acid esterification using [1-11C]palmitate and PET: comparison with direct measurements of myocardial triglyceride synthesis. Journal of Nuclear Cardiology, 2009, 16, 562-570.	1.4	5
44	PET Measurements of Myocardial Glucose Metabolism with 1-11C-Glucose and Kinetic Modeling. Journal of Nuclear Medicine, 2007, 48, 955-964.	2.8	31
45	L-3-11C-Lactate as a PET Tracer of Myocardial Lactate Metabolism: A Feasibility Study. Journal of Nuclear Medicine, 2007, 48, 2046-2055.	2.8	34
46	Absence of an Effect of Liposuction on Insulin Action and Risk Factors for Coronary Heart Disease. New England Journal of Medicine, 2004, 350, 2549-2557.	13.9	680
47	Are peristaltic pumps as reliable as syringe pumps for metabolic research? assessment of accuracy, precision, and metabolic kinetics. Metabolism: Clinical and Experimental, 2004, 53, 875-878.	1.5	6
48	Gender differences in glucose kinetics and substrate oxidation during exercise near the lactate threshold. Journal of Applied Physiology, 2002, 92, 1125-1132.	1.2	51
49	Glucose kinetics and substrate oxidation during exercise in the follicular and luteal phases. Journal of Applied Physiology, 2001, 90, 447-453.	1.2	149
50	Fat metabolism during high-intensity exercise in endurance-trained and untrained men. Metabolism: Clinical and Experimental, 2000, 49, 122-128.	1.5	87
51	Assessment of methods for improving tracer estimation of non-steady-state rate of appearance. Journal of Applied Physiology, 1999, 87, 1813-1822.	1.2	58
52	Use of stable isotopes to study carbohydrate and fat metabolism at the whole-body level. Proceedings of the Nutrition Society, 1999, 58, 953-961.	0.4	32
53	Validation of a Mathematical Model for Road Cycling Power. Journal of Applied Biomechanics, 1998, 14, 276-291.	0.3	286
54	Regulation of fatty acid oxidation in untrained vs. trained men during exercise. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E510-E515.	1.8	43

#	Article	IF	CITATIONS
55	Letters to the Editor. Journal of Applied Physiology, 1998, 84, 1480-1482.	1.2	Ο
56	THE GLUCOSE CROSSOVER CONCEPT IS NOT AN IMPORTANT NEW CONCEPT IN EXERCISE METABOLISM. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 896-900.	0.9	11
57	Plasma glucose metabolism during exercise: effect of endurance training in humans. Medicine and Science in Sports and Exercise, 1997, 29, 620-627.	0.2	16
58	Effect of theophylline on substrate metabolism during exercise. Metabolism: Clinical and Experimental, 1996, 45, 1153-1160.	1.5	42
59	Endurance exercise training decreases capillary basement membrane width in older nondiabetic and diabetic adults. Journal of Applied Physiology, 1996, 80, 747-753.	1.2	37
60	Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. Journal of Applied Physiology, 1995, 78, 1203-1207.	1.2	66
61	Muscle Biopsy as a Tool in the Study of Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 1995, 50A, 30-34.	1.7	14
62	Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies Journal of Clinical Investigation, 1995, 95, 278-284.	3.9	82
63	Lipid and carbohydrate metabolism in IDDM during moderate and intense exercise. Diabetes, 1995, 44, 1066-1074.	0.3	12
64	Stroke volume measurement during supine and upright cycle exercise by impedance cardiography. Annals of Biomedical Engineering, 1994, 22, 514-523.	1.3	9
65	Muscle metabolism during exercise in young and older untrained and endurance-trained men. Journal of Applied Physiology, 1993, 75, 2125-2133.	1.2	149
66	Isotopic estimation of CO2 production during exercise before and after endurance training. Journal of Applied Physiology, 1993, 75, 70-75.	1.2	51
67	Underestimation of substrate oxidation during exercise due to failure to account for bicarbonate kinetics. Journal of Applied Physiology, 1993, 75, 2341-2343.	1.2	5
68	Histochemical and Enzymatic Comparison of the Gastrocnemius Muscle of Young and Elderly Men and Women. Journal of Gerontology, 1992, 47, B71-B76.	2.0	363
69	Plasma Glucose Metabolism During Exercise in Humans. Sports Medicine, 1991, 11, 102-124.	3.1	92
70	Effects of gender, age, and fitness level on response of VO2max to training in 60-71 yr olds. Journal of Applied Physiology, 1991, 71, 2004-2011.	1.2	336
71	Exercise metabolism at different time intervals after a meal. Journal of Applied Physiology, 1991, 70, 882-888.	1.2	112
72	Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure Circulation, 1989, 80, 1338-1346.	1.6	365

#	Article	IF	CITATIONS
73	Metabolism and performance following carbohydrate ingestion late in exercise. Medicine and Science in Sports and Exercise, 1989, 21, 59-65.	0.2	120
74	Effect of carbohydrate feedings during high-intensity exercise. Journal of Applied Physiology, 1988, 65, 1703-1709.	1.2	111
75	Determinants of endurance in well-trained cyclists. Journal of Applied Physiology, 1988, 64, 2622-2630.	1.2	340
76	Exercise stroke volume relative to plasma-volume expansion. Journal of Applied Physiology, 1988, 64, 404-408.	1.2	101
77	Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. Journal of Applied Physiology, 1987, 63, 2388-2395.	1.2	320
78	Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology, 1986, 61, 165-172.	1.2	841
79	Substrate usage during prolonged exercise following a preexercise meal. Journal of Applied Physiology, 1985, 59, 429-433.	1.2	194
80	Effectiveness of Carbohydrate Feeding in Delaying Fatigue during Prolonged Exercise. Sports Medicine, 1984, 1, 446-458.	3.1	90