Qi-Pu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6091601/publications.pdf

Version: 2024-02-01

79 4,465 34 66 papers citations h-index 88 88 5425

88 88 5425
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	2.0	3
2	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
3	Modification of metallic and non-metallic sites in pentasupertetrahedral chalcogenidometalate clusters for third-order nonlinear optical response. Dalton Transactions, 2022, 51, 2660-2663.	3.3	2
4	Acid–base resistant ligand-modified molybdenum–sulfur clusters with enhanced photocatalytic activity towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 7138-7145.	10.3	7
5	Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing. Journal of Materials Chemistry A, 2022, 10, 12977-12983.	10.3	10
6	Construction of Titanium-Based Metal–Organic Frameworks Based on the Ti/Cu Heteronuclear Cluster. Inorganic Chemistry, 2021, 60, 24-27.	4.0	4
7	Synthesis and photoluminescence of organotin-dithiothreitol clusters. Journal of Solid State Chemistry, 2021, 297, 122056.	2.9	2
8	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52588-52594.	8.0	3
9	Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie, 2020, 132, 23794-23798.	2.0	8
10	Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 23588-23592.	13.8	83
11	Tin-oxychalcogenide supertetrahedral clusters maintained in a MTN zeolite-analog arrangement by coulombic interactions. Chemical Communications, 2020, 56, 8388-8391.	4.1	8
12	Optical limiting properties of metalloporphyrin-based zirconium-polyphenolate frameworks. Journal of Solid State Chemistry, 2020, 285, 121224.	2.9	10
13	A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chemical Communications, 2019, 55, 11083-11086.	4.1	15
14	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & amp; Interfaces, 2019, 11, 45118-45125.	8.0	29
15	Dual-cubic-cage based lanthanide sulfate–carboxylpyrazolate frameworks with high hydrolytic stability and remarkable proton conduction. Chemical Communications, 2019, 55, 2497-2500.	4.1	11
16	Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO ₂ to cyclic carbonates. Chemical Communications, 2019, 55, 412-415.	4.1	36
17	Robust Porphyrin-Spaced Zirconium Pyrogallate Frameworks with High Proton Conduction. Inorganic Chemistry, 2019, 58, 3569-3573.	4.0	29
18	Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catalysis, 2018, 8, 4583-4590.	11.2	184

#	Article	IF	CITATIONS
19	Optical Resolution of the Water-Soluble Ti ₄ (embonate) ₆ Cages for Enantioselective Recognition of Chiral Drugs. Chemistry of Materials, 2018, 30, 7769-7775.	6.7	49
20	Dimension-related magnetism in heterometallic complexes based on the same [LnCu(dicarboxylpyrazole)2] building moieties. Journal of Solid State Chemistry, 2018, 265, 29-35.	2.9	6
21	Charge―and Sizeâ€Complementary Multimetalâ€Induced Morphology and Phase Control in Zeoliteâ€Type Metal Chalcogenides. Chemistry - A European Journal, 2018, 24, 10812-10819.	3.3	10
22	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	21.0	184
23	Nanoporous carbon derived from a functionalized metal–organic framework as a highly efficient oxygen reduction electrocatalyst. Nanoscale, 2017, 9, 862-868.	5.6	56
24	Water-Soluble and Ultrastable Ti ₄ L ₆ Tetrahedron with Coordination Assembly Function. Journal of the American Chemical Society, 2017, 139, 16845-16851.	13.7	145
25	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	10.3	26
26	Selective Ion Exchange and Photocatalysis by Zeoliteâ€Like Semiconducting Chalcogenide. Chemistry - A European Journal, 2017, 23, 11913-11919.	3.3	25
27	Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity. Langmuir, 2017, 33, 13634-13639.	3.5	18
28	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie - International Edition, 2016, 55, 2768-2772.	13.8	116
29	Open framework metal chalcogenides as efficient photocatalysts for reduction of CO ₂ into renewable hydrocarbon fuel. Nanoscale, 2016, 8, 10913-10916.	5.6	42
30	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	3.0	11
31	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie, 2016, 128, 2818-2822.	2.0	20
32	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie - International Edition, 2015, 54, 7886-7890.	13.8	141
33	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie, 2015, 127, 7997-8001.	2.0	26
34	New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. Journal of the American Chemical Society, 2015, 137, 2235-2238.	13.7	254
35	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	3.3	80
36	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	21.0	231

#	Article	lF	CITATIONS
37	Efficient Oxygen Electroreduction: Hierarchical Porous Fe–N-doped Hollow Carbon Nanoshells. ACS Catalysis, 2015, 5, 3887-3893.	11.2	117
38	Mimicking High-Silica Zeolites: Highly Stable Germanium- and Tin-Rich Zeolite-Type Chalcogenides. Journal of the American Chemical Society, 2015, 137, 6184-6187.	13.7	123
39	Charge-tunable indium–organic frameworks built from cationic, anionic, and neutral building blocks. Dalton Transactions, 2015, 44, 16671-16674.	3.3	40
40	Polymorphic Graphene-like Cuprous Germanosulfides with a High Cu-to-Ge Ratio and Low Band Gap. Inorganic Chemistry, 2014, 53, 13207-13211.	4.0	12
41	Visibleâ€Lightâ€Driven, Tunable, Photoelectrochemical Performance of a Series of Metalâ€Chelate, Dyeâ€Organized, Crystalline, CdS Nanoclusters. Chemistry - A European Journal, 2014, 20, 8297-8301.	3.3	21
42	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	3.0	38
43	Homochiral 3D lanthanide camphorates with high thermal stability. New Journal of Chemistry, 2014, 38, 55-58.	2.8	9
44	Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium–MOF. Chemical Communications, 2014, 50, 15619-15622.	4.1	89
45	Porphyrinic porous organic frameworks: preparation and post-synthetic modification via demetallation–remetallation. Journal of Materials Chemistry A, 2014, 2, 14876-14882.	10.3	34
46	An infinite square lattice of super-supertetrahedral T6-like tin oxyselenide clusters. Chemical Communications, 2014, 50, 4044.	4.1	35
47	Zeolitic Metal–Organic Frameworks Based on Amino Acid. Inorganic Chemistry, 2014, 53, 10027-10029.	4.0	44
48	Incorporation of iron hydrogenase active sites into a highly stable metal–organic framework for photocatalytic hydrogen generation. Chemical Communications, 2014, 50, 10390.	4.1	172
49	Perfect Statistical Symmetrization of a Heterofunctional Ligand Induced by Pseudo-Copper Trimer in an Expanded Matrix of HKUST-1. Crystal Growth and Design, 2013, 13, 5175-5178.	3.0	5
50	Using alkaline-earth metal ions to tune structural variations of 1,3,5-benzenetricarboxylate coordination polymers. Dalton Transactions, 2013, 42, 2294-2301.	3.3	134
51	A "pillar-freeâ€, highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays. Chemical Communications, 2013, 49, 2828.	4.1	47
52	A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Transactions, 2012, 41, 3620.	3.3	20
53	Induction of trimeric [Mg3(OH)(CO2)6] in a porous framework by a desymmetrized tritopic ligand. Dalton Transactions, 2012, 41, 2866.	3.3	45
54	Single-Walled Polytetrazolate Metal–Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake. Journal of the American Chemical Society, 2012, 134, 784-787.	13.7	169

#	Article	IF	CITATIONS
55	High CO ₂ and H ₂ Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. Chemistry of Materials, 2012, 24, 2624-2626.	6.7	109
56	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	13.8	62
57	A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chemical Communications, 2011, 47, 3918.	4.1	81
58	A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chemical Communications, 2011, 47, 11852.	4.1	117
59	A Nine-Connected Mixed-Ligand Nickel-Organic Framework and Its Gas Sorption Properties. Crystal Growth and Design, 2011, 11, 3713-3716.	3.0	54
60	A 2D polyoxometalate-based complex: spin-canting and metamagnetism. CrystEngComm, 2011, 13, 3686.	2.6	33
61	Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K ₁₀ [Nb ₂ O ₂ O(sub>2O) ₂][SiNb ₁₂ O _{O_O}}}	ıb 140 <td>ıba]∲812H<s< td=""></s<></td>	ıba]∲8 12H <s< td=""></s<>
62	Lanthanide Antimony Oxohalides: From Discrete Nanoclusters to Inorganic–Organic Hybrid Chains and Layers. Angewandte Chemie - International Edition, 2011, 50, 8110-8113.	13.8	23
63	Canted antiferromagnetic behaviours in isostructural Co(ii) and Ni(ii) frameworks with helical lvt topology. CrystEngComm, 2010, 12, 2938.	2.6	22
64	Novel copper(II) sulfonate–arsonates with discrete cluster, 1D chain and layered structures. Journal of Molecular Structure, 2010, 984, 416-423.	3.6	16
65	Multifunctional Homochiral Lanthanide Camphorates with Mixed Achiral Terephthalate Ligands. Inorganic Chemistry, 2010, 49, 9257-9264.	4.0	82
66	A Series of New Manganese(II) Sulfonate-Arsonates with 2D Layer, 1D Chain, and 0D Clusters Structures. Inorganic Chemistry, 2010, 49, 3489-3500.	4.0	27
67	A sensitive phosphorescent thiol chemosensor based on an iridium(iii) complex with α,β-unsaturated ketone functionalized 2,2′-bipyridyl ligand. Dalton Transactions, 2010, 39, 8288.	3.3	43
68	Capturing in situ generated NHH–Nî€NH molecule via the templating synthesis of a 4-connected open Cd(ii) framework. CrystEngComm, 2010, 12, 1024-1026.	2.6	15
69	Breaking the Mirror: pHâ€Controlled Chirality Generation from a <i>meso</i> Ligand to a Racemic Ligand. Chemistry - A European Journal, 2009, 15, 989-1000.	3.3	67
70	New Types of 3D Organically Templated Zn ²⁺ /Cd ²⁺ â^'Cu ⁺ Mixed Metal Sulfites. Inorganic Chemistry, 2009, 48, 5454-5461.	4.0	17
71	Explorations of New Phases in the Ga ^{III} /In ^{III} -Cu ^{II} -Se ^{IV} -O System. Inorganic Chemistry, 2009, 48, 6794-6803.	4.0	13
72	Temperature-Controlled Syntheses of Substituted 1,2,4-Triazolelead(II) Complexes: Active Lone Pair and Nâ°'H···X (X = Cl, Br, I) Hydrogen Bonds. Inorganic Chemistry, 2009, 48, 9992-9994.	4.0	21

#	Article	IF	CITATION
73	Synthesis, Structure, and Luminescent Properties of Hybrid Inorganicâ^'Organic Framework Materials Formed by Lead Aromatic Carboxylates: Inorganic Connectivity Variation from 0D to 3D. Inorganic Chemistry, 2009, 48, 6517-6525.	4.0	204
74	Protonated 3-amino-1,2,4-triazole templated luminescent lanthanide isophthalates with a rare (3,6)-connected topology. CrystEngComm, 2009, 11, 2734.	2.6	31
75	Novel (3,6)-connected network and (4,6)-connected framework in two copper(II) and cadmium(II) complexes of flexible (2S,3S,4R,5R)-tetrahydrofurantetracarboxylic acid: synthesis, structure, thermostability, and luminescence studies. CrystEngComm, 2009, 11, 1934.	2.6	22
76	Trapping in situ scission products of C–O ester bonds by unique coordination supramolecular architectures. CrystEngComm, 2009, 11, 1815.	2.6	12
77	Configuration determination of flexible tetracarboxylate ligands in two supramolecular structures. CrystEngComm, 2009, 11, 1201.	2.6	18
78	Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metalâ^'Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 2008, 47, 8286-8293.	4.0	132
79	Cationic complex directed thiostannate layers with excellent proton conduction and photocatalytic properties. CrystEngComm, 0 , , .	2.6	1