
Qi-Pu Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6091601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. Journal of the American Chemical Society, 2015, 137, 2235-2238.	13.7	254
2	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	21.0	231
3	Synthesis, Structure, and Luminescent Properties of Hybrid Inorganicâ^'Organic Framework Materials Formed by Lead Aromatic Carboxylates: Inorganic Connectivity Variation from 0D to 3D. Inorganic Chemistry, 2009, 48, 6517-6525.	4.0	204
4	Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catalysis, 2018, 8, 4583-4590.	11.2	184
5	Acid and Base Resistant Zirconium Polyphenolateâ€Metalloporphyrin Scaffolds for Efficient CO ₂ Photoreduction. Advanced Materials, 2018, 30, 1704388.	21.0	184
6	Incorporation of iron hydrogenase active sites into a highly stable metal–organic framework for photocatalytic hydrogen generation. Chemical Communications, 2014, 50, 10390.	4.1	172
7	Single-Walled Polytetrazolate Metal–Organic Channels with High Density of Open Nitrogen-Donor Sites and Gas Uptake. Journal of the American Chemical Society, 2012, 134, 784-787.	13.7	169
8	Synthesis and Photocatalytic Properties of a New Heteropolyoxoniobate Compound: K ₁₀ [Nb ₂ O ₂ (H ₂ O) ₂][SiNb ₁₂ O <su Journal of the American Chemical Society, 2011, 133, 6934-6937.</su 	ıb 140 <td>ıbя]¢Â812H≺su</td>	ıbя]¢Â812H≺su
9	Water-Soluble and Ultrastable Ti ₄ L ₆ Tetrahedron with Coordination Assembly Function. Journal of the American Chemical Society, 2017, 139, 16845-16851.	13.7	145
10	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie - International Edition, 2015, 54, 7886-7890.	13.8	141
11	Using alkaline-earth metal ions to tune structural variations of 1,3,5-benzenetricarboxylate coordination polymers. Dalton Transactions, 2013, 42, 2294-2301.	3.3	134
12	Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metalâ^'Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 2008, 47, 8286-8293.	4.0	132
13	Mimicking High-Silica Zeolites: Highly Stable Germanium- and Tin-Rich Zeolite-Type Chalcogenides. Journal of the American Chemical Society, 2015, 137, 6184-6187.	13.7	123
14	A chiral tetragonal magnesium-carboxylate framework with nanotubular channels. Chemical Communications, 2011, 47, 11852.	4.1	117
15	Efficient Oxygen Electroreduction: Hierarchical Porous Fe–N-doped Hollow Carbon Nanoshells. ACS Catalysis, 2015, 5, 3887-3893.	11.2	117
16	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie - International Edition, 2016, 55, 2768-2772.	13.8	116
17	High CO ₂ and H ₂ Uptake in an Anionic Porous Framework with Amino-Decorated Polyhedral Cages. Chemistry of Materials, 2012, 24, 2624-2626.	6.7	109
18	Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium–MOF. Chemical Communications, 2014, 50, 15619-15622.	4.1	89

#	Article	IF	CITATIONS
19	Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visibleâ€Lightâ€Driven CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 23588-23592.	13.8	83
20	Multifunctional Homochiral Lanthanide Camphorates with Mixed Achiral Terephthalate Ligands. Inorganic Chemistry, 2010, 49, 9257-9264.	4.0	82
21	A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chemical Communications, 2011, 47, 3918.	4.1	81
22	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	3.3	80
23	Breaking the Mirror: pHâ€Controlled Chirality Generation from a <i>meso</i> Ligand to a Racemic Ligand. Chemistry - A European Journal, 2009, 15, 989-1000.	3.3	67
24	Two Zeoliteâ€Type Frameworks in One Metal–Organic Framework with Zn ₂₄ @Zn ₁₀₄ Cubeâ€inâ€Sodalite Architecture. Angewandte Chemie - International Edition, 2012, 51, 8538-8541.	13.8	62
25	Nanoporous carbon derived from a functionalized metal–organic framework as a highly efficient oxygen reduction electrocatalyst. Nanoscale, 2017, 9, 862-868.	5.6	56
26	A Nine-Connected Mixed-Ligand Nickel-Organic Framework and Its Gas Sorption Properties. Crystal Growth and Design, 2011, 11, 3713-3716.	3.0	54
27	Optical Resolution of the Water-Soluble Ti ₄ (embonate) ₆ Cages for Enantioselective Recognition of Chiral Drugs. Chemistry of Materials, 2018, 30, 7769-7775.	6.7	49
28	A "pillar-freeâ€; highly porous metalloporphyrinic framework exhibiting eclipsed porphyrin arrays. Chemical Communications, 2013, 49, 2828.	4.1	47
29	Induction of trimeric [Mg3(OH)(CO2)6] in a porous framework by a desymmetrized tritopic ligand. Dalton Transactions, 2012, 41, 2866.	3.3	45
30	Zeolitic Metal–Organic Frameworks Based on Amino Acid. Inorganic Chemistry, 2014, 53, 10027-10029.	4.0	44
31	A sensitive phosphorescent thiol chemosensor based on an iridium(iii) complex with α,β-unsaturated ketone functionalized 2,2′-bipyridyl ligand. Dalton Transactions, 2010, 39, 8288.	3.3	43
32	Open framework metal chalcogenides as efficient photocatalysts for reduction of CO ₂ into renewable hydrocarbon fuel. Nanoscale, 2016, 8, 10913-10916.	5.6	42
33	Charge-tunable indium–organic frameworks built from cationic, anionic, and neutral building blocks. Dalton Transactions, 2015, 44, 16671-16674.	3.3	40
34	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	3.0	38
35	Robust multivariate metal–porphyrin frameworks for efficient ambient fixation of CO ₂ to cyclic carbonates. Chemical Communications, 2019, 55, 412-415.	4.1	36
36	An infinite square lattice of super-supertetrahedral T6-like tin oxyselenide clusters. Chemical Communications, 2014, 50, 4044.	4.1	35

#	Article	IF	CITATIONS
37	Porphyrinic porous organic frameworks: preparation and post-synthetic modification via demetallation–remetallation. Journal of Materials Chemistry A, 2014, 2, 14876-14882.	10.3	34
38	A 2D polyoxometalate-based complex: spin-canting and metamagnetism. CrystEngComm, 2011, 13, 3686.	2.6	33
39	Protonated 3-amino-1,2,4-triazole templated luminescent lanthanide isophthalates with a rare (3,6)-connected topology. CrystEngComm, 2009, 11, 2734.	2.6	31
40	Elucidating J-Aggregation Effect in Boosting Singlet-Oxygen Evolution Using Zirconium–Porphyrin Frameworks: A Comprehensive Structural, Catalytic, and Spectroscopic Study. ACS Applied Materials & Interfaces, 2019, 11, 45118-45125.	8.0	29
41	Robust Porphyrin-Spaced Zirconium Pyrogallate Frameworks with High Proton Conduction. Inorganic Chemistry, 2019, 58, 3569-3573.	4.0	29
42	A Series of New Manganese(II) Sulfonate-Arsonates with 2D Layer, 1D Chain, and 0D Clusters Structures. Inorganic Chemistry, 2010, 49, 3489-3500.	4.0	27
43	Cooperative Crystallization of Heterometallic Indium–Chromium Metal–Organic Polyhedra and Their Fast Proton Conductivity. Angewandte Chemie, 2015, 127, 7997-8001.	2.0	26
44	Porphyrinic coordination lattices with fluoropillars. Journal of Materials Chemistry A, 2017, 5, 21189-21195.	10.3	26
45	Selective Ion Exchange and Photocatalysis by Zeoliteâ€Like Semiconducting Chalcogenide. Chemistry - A European Journal, 2017, 23, 11913-11919.	3.3	25
46	Lanthanide Antimony Oxohalides: From Discrete Nanoclusters to Inorganic–Organic Hybrid Chains and Layers. Angewandte Chemie - International Edition, 2011, 50, 8110-8113.	13.8	23
47	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
48	Novel (3,6)-connected network and (4,6)-connected framework in two copper(II) and cadmium(II) complexes of flexible (2S,3S,4R,5R)-tetrahydrofurantetracarboxylic acid: synthesis, structure, thermostability, and luminescence studies. CrystEngComm, 2009, 11, 1934.	2.6	22
49	Canted antiferromagnetic behaviours in isostructural Co(ii) and Ni(ii) frameworks with helical lvt topology. CrystEngComm, 2010, 12, 2938.	2.6	22
50	Temperature-Controlled Syntheses of Substituted 1,2,4-Triazolelead(II) Complexes: Active Lone Pair and Nâ^'H···X (X = Cl, Br, I) Hydrogen Bonds. Inorganic Chemistry, 2009, 48, 9992-9994.	4.0	21
51	Visibleâ€Lightâ€Driven, Tunable, Photoelectrochemical Performance of a Series of Metalâ€Chelate, Dyeâ€Organized, Crystalline, CdS Nanoclusters. Chemistry - A European Journal, 2014, 20, 8297-8301.	3.3	21
52	A twelve-connected porous framework built from rare linear cadmium tricarboxylate pentamer. Dalton Transactions, 2012, 41, 3620.	3.3	20
53	Framework Cationization by Preemptive Coordination of Open Metal Sites for Anionâ€Exchange Encapsulation of Nucleotides and Coenzymes. Angewandte Chemie, 2016, 128, 2818-2822.	2.0	20
54	Configuration determination of flexible tetracarboxylate ligands in two supramolecular structures. CrystEngComm, 2009, 11, 1201.	2.6	18

#	Article	IF	CITATIONS
55	Integrating Zeolite-Type Chalcogenide with Titanium Dioxide Nanowires for Enhanced Photoelectrochemical Activity. Langmuir, 2017, 33, 13634-13639.	3.5	18
56	New Types of 3D Organically Templated Zn ²⁺ /Cd ²⁺ â^'Cu ⁺ Mixed Metal Sulfites. Inorganic Chemistry, 2009, 48, 5454-5461.	4.0	17
57	Novel copper(II) sulfonate–arsonates with discrete cluster, 1D chain and layered structures. Journal of Molecular Structure, 2010, 984, 416-423.	3.6	16
58	Capturing in situ generated NHH–Nî€NH molecule via the templating synthesis of a 4-connected open Cd(ii) framework. CrystEngComm, 2010, 12, 1024-1026.	2.6	15
59	A wide pH-range stable crystalline framework based on the largest tin-oxysulfide cluster [Sn20O10S34]. Chemical Communications, 2019, 55, 11083-11086.	4.1	15
60	Explorations of New Phases in the Ga ^{III} /In ^{III} -Cu ^{II} -Se ^{IV} -O System. Inorganic Chemistry, 2009, 48, 6794-6803.	4.0	13
61	Trapping in situ scission products of C–O ester bonds by unique coordination supramolecular architectures. CrystEngComm, 2009, 11, 1815.	2.6	12
62	Polymorphic Graphene-like Cuprous Germanosulfides with a High Cu-to-Ge Ratio and Low Band Gap. Inorganic Chemistry, 2014, 53, 13207-13211.	4.0	12
63	Organization of Lithium Cubane Clusters into Three-Dimensional Porous Frameworks by Self-Penetration and Self-Polymerization. Crystal Growth and Design, 2016, 16, 6531-6536.	3.0	11
64	Dual-cubic-cage based lanthanide sulfate–carboxylpyrazolate frameworks with high hydrolytic stability and remarkable proton conduction. Chemical Communications, 2019, 55, 2497-2500.	4.1	11
65	Charge―and Sizeâ€Complementary Multimetalâ€Induced Morphology and Phase Control in Zeoliteâ€Type Metal Chalcogenides. Chemistry - A European Journal, 2018, 24, 10812-10819.	3.3	10
66	Optical limiting properties of metalloporphyrin-based zirconium-polyphenolate frameworks. Journal of Solid State Chemistry, 2020, 285, 121224.	2.9	10
67	Crystalline microporous small molecule semiconductors based on porphyrin for high-performance chemiresistive gas sensing. Journal of Materials Chemistry A, 2022, 10, 12977-12983.	10.3	10
68	Homochiral 3D lanthanide camphorates with high thermal stability. New Journal of Chemistry, 2014, 38, 55-58.	2.8	9
69	Photochemical In Situ Exfoliation of Metal–Organic Frameworks for Enhanced Visible‣ightâ€Driven CO ₂ Reduction. Angewandte Chemie, 2020, 132, 23794-23798.	2.0	8
70	Tin-oxychalcogenide supertetrahedral clusters maintained in a MTN zeolite-analog arrangement by coulombic interactions. Chemical Communications, 2020, 56, 8388-8391.	4.1	8
71	Acid–base resistant ligand-modified molybdenum–sulfur clusters with enhanced photocatalytic activity towards hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 7138-7145.	10.3	7
72	Dimension-related magnetism in heterometallic complexes based on the same [LnCu(dicarboxylpyrazole)2] building moieties. Journal of Solid State Chemistry, 2018, 265, 29-35.	2.9	6

#	Article	IF	CITATIONS
73	Perfect Statistical Symmetrization of a Heterofunctional Ligand Induced by Pseudo-Copper Trimer in an Expanded Matrix of HKUST-1. Crystal Growth and Design, 2013, 13, 5175-5178.	3.0	5
74	Construction of Titanium-Based Metal–Organic Frameworks Based on the Ti/Cu Heteronuclear Cluster. Inorganic Chemistry, 2021, 60, 24-27.	4.0	4
75	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52588-52594.	8.0	3
76	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	2.0	3
77	Synthesis and photoluminescence of organotin-dithiothreitol clusters. Journal of Solid State Chemistry, 2021, 297, 122056.	2.9	2
78	Modification of metallic and non-metallic sites in pentasupertetrahedral chalcogenidometalate clusters for third-order nonlinear optical response. Dalton Transactions, 2022, 51, 2660-2663.	3.3	2
79	Cationic complex directed thiostannate layers with excellent proton conduction and photocatalytic properties. CrystEngComm, 0, , .	2.6	1