Shuguang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6090700/publications.pdf

Version: 2024-02-01

687363 794594 19 387 13 19 citations h-index g-index papers 19 19 19 305 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Relay catalysis of copper-magnesium catalyst on efficient valorization of glycerol to glycolic acid. Chemical Engineering Journal, 2022, 428, 132555.	12.7	12
2	The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. Bioresource Technology, 2022, 346, 126585.	9.6	8
3	Oligomer-first mechanism in the transformation of biomass derivatives selectively to produce D-lactic acid. Chemical Engineering Journal, 2022, 432, 134359.	12.7	8
4	Selective transformation of typical sugars to lactic acid catalyzed by dealuminated ZSM-5 supported erbium. Renewable Energy, 2022, 187, 551-560.	8.9	10
5	Mechanistic Investigations of the Synthesis of Lactic Acid from Glycerol Catalyzed by an Iridium–NHC Complex. Processes, 2022, 10, 626.	2.8	4
6	Regulating the competitive reaction pathway in glycerol conversion to lactic acid/glycolic acid selectively. Journal of Catalysis, 2022, 413, 407-416.	6.2	22
7	One-pot chemo-catalytic conversion of glucose to methyl lactate over $\ln \hat{I}^3$ -Al2O3 catalyst. Catalysis Today, 2021, 365, 249-256.	4.4	19
8	Advanced masking agent for leather tanning from stepwise degradation and oxidation of cellulose. Green Chemistry, 2021, 23, 4044-4050.	9.0	32
9	Enantioselective synthesis of D-lactic acid via chemocatalysis using MgO: Experimental and molecular-based rationalization of the triose's reactivity and preliminary insights with raw biomass. Applied Catalysis B: Environmental, 2021, 292, 120145.	20.2	37
10	The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating. Chemical Engineering Journal, 2021, 421, 130014.	12.7	19
11	A â€Trojan horse strategy' for the development of a renewable leather tanning agent produced <i>via</i> an AlCl ₃ -catalyzed cellulose depolymerization. Green Chemistry, 2020, 22, 316-321.	9.0	31
12	The effect of sodium chloride concentration on the mutarotation and structure of d-xylose in water: Experimental and theoretical investigation. Carbohydrate Research, 2020, 489, 107941.	2.3	5
13	Directing the Simultaneous Conversion of Hemicellulose and Cellulose in Raw Biomass to Lactic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 4244-4255.	6.7	47
14	The Roles of H2O/Tetrahydrofuran System in Lignocellulose Valorization. Frontiers in Chemistry, 2020, 8, 70.	3.6	16
15	\hat{I}^3 -Valerolactone Production from Furfural Residue with Formic Acid as the Sole Hydrogen Resource via an Integrated Strategy on Au-Ni/ZrO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 17228-17238.	3.7	15
16	Recovery of Lactic Acid from Corn Stover Hemicellulose-Derived Liquor. ACS Omega, 2019, 4, 10571-10579.	3.5	16
17	D-Excess-LaA Production Directly from Biomass by Trivalent Yttrium Species. IScience, 2019, 12, 132-140.	4.1	19
18	Synergistic Effect of Different Species in Stannic Chloride Solution on the Production of Levulinic Acid from Biomass. ACS Sustainable Chemistry and Engineering, 2019, 7, 5176-5183.	6.7	40

Shuguang Xu

#	Article	IF	CITATIONS
19	Separation of lactic acid from synthetic solutions and the mixture directly derived from corn stover by aqueous two phase extraction. Separation and Purification Technology, 2018, 204, 281-289.	7.9	27