Matthew B Jessee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6090673/publications.pdf

Version: 2024-02-01

257450 276875 1,927 64 24 41 citations g-index h-index papers 64 64 64 1337 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Determining Strength: A Case for Multiple Methods of Measurement. Sports Medicine, 2017, 47, 193-195.	6.5	128
2	Muscle Adaptations to High-Load Training and Very Low-Load Training With and Without Blood Flow Restriction. Frontiers in Physiology, 2018, 9, 1448.	2.8	94
3	The Influence of Cuff Width, Sex, and Race on Arterial Occlusion: Implications for Blood Flow Restriction Research. Sports Medicine, 2016, 46, 913-921.	6.5	88
4	The widespread misuse of effect sizes. Journal of Science and Medicine in Sport, 2017, 20, 446-450.	1.3	82
5	Training to Fatigue: The Answer for Standardization When Assessing Muscle Hypertrophy?. Sports Medicine, 2017, 47, 1021-1027.	6.5	75
6	The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses. Physiology and Behavior, 2017, 171, 181-186.	2.1	74
7	Frequency: The Overlooked Resistance Training Variable for Inducing Muscle Hypertrophy?. Sports Medicine, 2017, 47, 799-805.	6.5	72
8	The Effects of Blood Flow Restriction on Upper-Body Musculature Located Distal and Proximal to Applied Pressure. Sports Medicine, 2016, 46, 23-33.	6.5	70
9	Mechanisms of Blood Flow Restriction: The New Testament. Techniques in Orthopaedics, 2018, 33, 72-79.	0.2	68
10	The Application of Blood Flow Restriction: Lessons From the Laboratory. Current Sports Medicine Reports, 2018, 17, 129-134.	1,2	61
11	Correlations Do Not Show Cause and Effect: Not Even for Changes in Muscle Size and Strength. Sports Medicine, 2018, 48, 1-6.	6.5	61
12	Do metabolites that are produced during resistance exercise enhance muscle hypertrophy?. European Journal of Applied Physiology, 2017, 117, 2125-2135.	2.5	59
13	The acute and chronic effects of "NO LOAD―resistance training. Physiology and Behavior, 2016, 164, 345-352.	2.1	57
14	A tale of three cuffs: the hemodynamics of blood flow restriction. European Journal of Applied Physiology, 2017, 117, 1493-1499.	2.5	56
15	The Cardiovascular and Perceptual Response to Very Low Load Blood Flow Restricted Exercise. International Journal of Sports Medicine, 2017, 38, 597-603.	1.7	56
16	The problem Of muscle hypertrophy: Revisited. Muscle and Nerve, 2016, 54, 1012-1014.	2.2	54
17	Influence of cuff material on blood flow restriction stimulus in the upper body. Journal of Physiological Sciences, 2017, 67, 207-215.	2.1	45
18	Blood flow in humans following low-load exercise with and without blood flow restriction. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1165-1171.	1.9	38

#	Article	IF	CITATIONS
19	The Impact of Ultrasound Probe Tilt on Muscle Thickness and Echo-Intensity: A Cross-Sectional Study. Journal of Clinical Densitometry, 2020, 23, 630-638.	1.2	36
20	Letter to the editor: Applying the blood flow restriction pressure: the elephant in the room. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H132-H133.	3.2	35
21	Muscle growth: To infinity and beyond?. Muscle and Nerve, 2017, 56, 1022-1030.	2.2	33
22	Let's talk about sex: where are the young females in blood flow restriction research?. Clinical Physiology and Functional Imaging, 2018, 38, 1-3.	1.2	32
23	Assessing differential responders and mean changes in muscle size, strength, and the crossover effect to 2 distinct resistance training protocols. Applied Physiology, Nutrition and Metabolism, 2020, 45, 463-470.	1.9	32
24	High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training. Physiological Measurement, 2019, 40, 035003.	2.1	29
25	Perceptual changes to progressive resistance training with and without blood flow restriction. Journal of Sports Sciences, 2019, 37, 1857-1864.	2.0	29
26	Post-exercise blood flow restriction attenuates muscle hypertrophy. European Journal of Applied Physiology, 2016, 116, 1955-1963.	2.5	26
27	Moderately heavy exercise produces lower cardiovascular, RPE, and discomfort compared to lower load exercise with and without blood flow restriction. European Journal of Applied Physiology, 2018, 118, 1473-1480.	2.5	26
28	Is muscle growth a mechanism for increasing strength?. Medical Hypotheses, 2019, 125, 51-56.	1.5	25
29	The General Adaptation Syndrome: Potential misapplications to resistance exercise. Journal of Science and Medicine in Sport, 2017, 20, 1015-1017.	1.3	23
30	Differentiating swelling and hypertrophy through indirect assessment of muscle damage in untrained men following repeated bouts of resistance exercise. European Journal of Applied Physiology, 2017, 117, 213-224.	2.5	23
31	Skeletal muscle mass in human athletes: What is the upper limit?. American Journal of Human Biology, 2018, 30, e23102.	1.6	22
32	Perceptual and arterial occlusion responses to very low load blood flow restricted exercise performed to volitional failure. Clinical Physiology and Functional Imaging, 2019, 39, 29-34.	1.2	22
33	Acute skeletal muscle responses to very lowâ€load resistance exercise with and without the application of blood flow restriction in the upper body. Clinical Physiology and Functional Imaging, 2019, 39, 201-208.	1.2	22
34	Validity of the Handheld Doppler to Determine Lower-Limb Blood Flow Restriction Pressure for Exercise Protocols. Journal of Strength and Conditioning Research, 2020, 34, 2693-2696.	2.1	22
35	A method to standardize the blood flow restriction pressure by an elastic cuff. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 329-335.	2.9	20
36	Blood flow restriction and cuff width: effect on blood flow in the legs. Clinical Physiology and Functional Imaging, 2018, 38, 944-948.	1.2	19

#	Article	IF	CITATIONS
37	The Basics of Training for Muscle Size and Strength: A Brief Review on the Theory. Medicine and Science in Sports and Exercise, 2020, 52, 645-653.	0.4	18
38	What does individual strength say about resistance training status?. Muscle and Nerve, 2017, 55, 455-457.	2.2	17
39	The acute muscular response to blood flowâ€restricted exercise with very low relative pressure. Clinical Physiology and Functional Imaging, 2018, 38, 304-311.	1.2	16
40	Blood flow restriction does not augment low force contractions taken to or near task failure. European Journal of Sport Science, 2020, 20, 650-659.	2.7	16
41	Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes. Applied Physiology, Nutrition and Metabolism, 2019, 44, 288-292.	1.9	15
42	Resistance exercise and sports performance: The minority report. Medical Hypotheses, 2018, 113, 1-5.	1.5	14
43	Can blood flow restriction augment muscle activation during highâ€load training?. Clinical Physiology and Functional Imaging, 2018, 38, 291-295.	1.2	14
44	Chasing the top quartile of cross-sectional data: Is it possible with resistance training?. Medical Hypotheses, 2017, 108, 63-68.	1.5	13
45	Differences in 100-m sprint performance and skeletal muscle mass between elite male and female sprinters. Journal of Sports Medicine and Physical Fitness, 2019, 59, 304-309.	0.7	12
46	Muscle size and strength: another study not designed to answer the question. European Journal of Applied Physiology, 2017, 117, 1273-1274.	2.5	10
47	Central cardiovascular hemodynamic response to unilateral handgrip exercise with blood flow restriction. European Journal of Applied Physiology, 2019, 119, 2255-2263.	2.5	10
48	Effects of load on the acute response of muscles proximal and distal to blood flow restriction. Journal of Physiological Sciences, 2018, 68, 769-779.	2.1	7
49	A critical review of the current evidence examining whether resistance training improves time trial performance. Journal of Sports Sciences, 2018, 36, 1485-1491.	2.0	7
50	A comparison of acute changes in muscle thickness between A-mode and B-mode ultrasound. Physiological Measurement, 2019, 40, 115004.	2.1	6
51	Acute hemodynamic changes following high load and very low load lower body resistance exercise with and without the restriction of blood flow. Physiological Measurement, 2018, 39, 125007.	2.1	5
52	Acute cardiovascular response to unilateral, bilateral, and alternating resistance exercise with blood flow restriction. European Journal of Applied Physiology, 2020, 120, 1921-1930.	2.5	5
53	Post-exercise blood flow restriction attenuates hyperemia similarly in males and females. European Journal of Applied Physiology, 2017, 117, 1707-1712.	2.5	4
54	Blood flow restriction: Methods matter. Experimental Gerontology, 2018, 104, 7-8.	2.8	4

#	Article	IF	CITATIONS
55	Magnetic resonance imaging-measured skeletal muscle mass to fat-free mass ratio increases with increasing levels of fat-free mass. Journal of Sports Medicine and Physical Fitness, 2019, 59, 619-623.	0.7	4
56	A Retrospective Analysis to Determine Whether Training-Induced Changes in Muscle Thickness Mediate Changes in Muscle Strength. Sports Medicine, 2021, 51, 1999-2010.	6.5	4
57	Do rhythms exist in elbow flexor torque, oral temperature and muscle thickness during normal waking hours?. Physiology and Behavior, 2016, 160, 12-17.	2.1	3
58	Comment on: "The General Adaptation Syndrome: A Foundation for the Concept of Periodization― Sports Medicine, 2018, 48, 1751-1753.	6.5	3
59	The acute muscular response to passive movement and blood flow restriction. Clinical Physiology and Functional Imaging, 2020, 40, 351-359.	1.2	3
60	A narrative review of the effects of blood flow restriction on vascular structure and function. Physiology International, 2022, 109, 186-203.	1.6	2
61	Limb Occlusion Pressure: A Method to Assess Changes in Systolic Blood Pressure. International Journal of Exercise Science, 2020, 13, 366-373.	0.5	1
62	Does the time of your health screening alter your "health�. International Journal of Cardiology, 2016, 220, 524-526.	1.7	0
63	Unilateral, bilateral, and alternating muscle actions elicit similar muscular responses during low load blood flow restriction exercise. European Journal of Applied Physiology, 2021, 121, 2879-2891.	2.5	0
64	A comparison of variability between absolute and relative blood flow restriction pressures. Clinical Physiology and Functional Imaging, 2022, , .	1.2	0